Ordering number : ENA1828

LC87F0808A

CMOSIC 8K-byte FROM and 256-byte RAM integrated

8-bit 1-chip Microcontroller

http://onsemi.com

Overview

The LC87F0808A is an 8-bit microcomputer that, centered around a CPU running at a minimum bus cycle time of 50.0ns, integrates on a single chip a number of hardware features such as 8K-byte flash ROM (On-boardprogrammable), 256-byte RAM, an On-chip-debugger, sophisticated 16-bit timers/counters (may be divided into 8-bit timers), a 16-bit timer/counter (may be divided into 8-bit timers/counters or 8-bit PWMs), two 8-bit timers with a prescaler, a base timer serving as a time-of-day clock, a high-speed clock counter, a synchronous SIO interface, an asynchronous/synchronous SIO interface, a UART interface (full duplex), motor control PWM, a 10/8-bit 10channel AD converter, a system clock frequency divider, an internal reset and a 21-source 10-vector interrupt feature. This microcomputer is suitable for small motor control equipment.

Features

- ■Flash ROM
 - Capable of On-board-programming with wide range (3.3 to 5.5V) of voltage source.
 - Block-erasable in 128 byte units
 - Writable in 2-byte units
 - 8192×8 bits

■RAM

- 256×9 bits
- ■Minimum Bus Cycle
 - 50.0ns (20MHz at V_{DD}=3.3V to 5.5V)

Note: The bus cycle time here refers to the ROM read speed.

* This product is licensed from Silicon Storage Technology, Inc. (USA).

■Ports

• Normal withstand voltage I/O ports

Ports I/O direction can be designated in 1-bit units
Ports I/O direction can be designated in 4-bit units

• Dedicated oscillator ports/input ports

• Reset pin

• On-chip Debugger pin

• Power pins

20 (P1n, P20, P21, P30 to P35, P70 to P73)

8 (P0n)

2 (CF1/XT1, CF2/XT2)

 $1(\overline{RES})$

1 (OWP0)

4 (VSS1, VSS2, VDD1, VDD2)

■Timers

• Timer 0: 16-bit timer/counter with a capture register.

Mode 0: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register) \times 2 channels

Mode 1: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register)

+ 8-bit counter (with an 8-bit capture register)

Mode 2: 16-bit timer with an 8-bit programmable prescaler (with a 16-bit capture register)

Mode 3: 16-bit counter (with a 16-bit capture register)

• Timer 1: 16-bit timer/counter that supports PWM/toggle outputs

Mode 0: 8-bit timer with an 8-bit prescaler (with toggle outputs) + 8-bit timer/

counter with an 8-bit prescaler (with toggle outputs)

Mode 1: 8-bit PWM with an 8-bit prescaler × 2 channels

Mode 2: 16-bit timer/counter with an 8-bit prescaler (with toggle outputs)

(toggle outputs also possible from the lower-order 8 bits)

Mode 3: 16-bit timer with an 8-bit prescaler (with toggle outputs)

(The lower-order 8 bits can be used as PWM)

- Timer 6: 8-bit timer with a 6-bit prescaler (with toggle outputs)
- Timer 7: 8-bit timer with a 6-bit prescaler (with toggle outputs)
- Base timer
 - 1) The clock is selectable from the subclock (32.768kHz crystal oscillation), system clock, and timer 0 prescaler output.
 - 2) Interrupts are programmable in 5 different time schemes
 - 3) The base timer is unavailable when the CF oscillator circuit is selected

■SIO

- SIO0: 8-bit Synchronous serial interface
 - 1) LSB first/MSB first mode selectable
 - 2) Built-in 8-bit baudrate generator (maximum transfer clock cycle=4/3tCYC)
- SIO1: 8-bit asynchronous/synchronous serial interface
 - Mode 0: Synchronous 8-bit serial I/O (2- or 3-wire configuration, 2 to 512 tCYC transfer clocks)
 - Mode 1: Asynchronous serial I/O (half-duplex, 8 data bits, 1 stop bit, 8 to 2048 tCYC baudrates)
 - Mode 2: Bus mode 1 (start bit, 8 data bits, 2 to 512 tCYC transfer clocks)
 - Mode 3: Bus mode 2 (start detect, 8 data bits, stop detect)

■UART

- Full Duplex
- 7/8/9 bit data bits selectable
- 1 Stop bit (2 bits in continuous data transmission)
- Built-in baudrate generator
- ■AD Converter: 10 bits/8 bits × 10 channels (internal: 2 channels)
 - 10/8 bits AD converter resolution selectable
 - Auto start function (It links an interrupt factor of MCPWM)

- ■Remote Control Receiver Circuit (sharing pins with P73, INT3, and T0IN)
 - Noise rejection function (noise filter time constant selectable from 1 tCYC/32 tCYC/128 tCYC)

■Clock Output Function

- Can generate clock outputs with a frequency of 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64 of the source clock selected as the system clock.
- Can generate the source clock for the subclock
- Analog Comparator / Amplifier × 2 channels
 - Analog comparator / amplifier selectable (each channel)
 - Analog comparator Interrupt

■MCPWM: Motor Control 12-bit PWM × 6 channels

- Dead time is programmable.
- Forced stop is possible by the output of the analog comparator and the INT terminals.
- Edge-aligned / center-aligned selectable

■Watchdog Timer

- Can generate the internal reset signal on a timer overflow monitored by the WDT-dedicated low-speed RC oscillation clock (30kHz).
- Allows selection of continue, stop, or hold mode operation of the counter on entry into the HALT/HOLD mode.

■Interrupts

- 21 sources, 10 vector addresses
 - 1) Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control. Any interrupt requests of the level equal to or lower than the current interrupt are not accepted.
 - 2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the smallest vector address takes precedence.

No.	Vector Address	Level	Interrupt Source
1	00003H	X or L	INT0
2	0000BH	X or L	INT1
3	00013H	H or L	INT2/T0L/INT4
4	0001BH	H or L	INT3/Base timer
5	00023H	H or L	тон
6	0002BH	H or L	T1L/T1H
7	00033H	H or L	SIO0/UART1 receive
8	0003BH	H or L	SIO1/UART1 transmit/MCPWM
9	00043H	H or L	ADC/T6/T7
10	0004BH	H or L	Port 0/CMP1/CMP2

- Priority levels X > H > L
- Of interrupts of the same level, the one with the smallest vector address takes precedence.
- ■Subroutine Stack Levels: 128levels (The stack is allocated in RAM.)
- ■High-speed Multiplication/Division Instructions

16 bits × 8 bits
24 bits × 16 bits
16 bits ÷ 8 bits
24 bits ÷ 16 bits
16 tCYC execution time)

■Oscillation Circuits

• Internal oscillation circuits

Medium-speed RC oscillation circuit: For system clock (1MHz)
High-speed RC oscillation circuit: For system clock (20MHz)
Low-speed RC oscillation circuit: For watch dog timer (30kHz)

• External oscillation circuits

Hi-speed CF oscillation circuit: For system clock, with internal Rf

Low speed crystal oscillation circuit: For low-speed system clock, with internal Rf

- 1) The CF and crystal oscillation circuits share the same pins. The active circuit is selected under program control.
- 2) The CF and the crystal oscillation circuits stop operating in the system reset state and start oscillating when the oscillation is enabled with an instruction.

■System Clock Divider Function

- Can run on low current.
- The minimum instruction cycle selectable from 150ns, 300ns, 600ns, 1.2μs, 2.4μs, 4.8μs, 9.6μs, 19.2μs and 38.4μs (at a main clock rate of 20MHz).

■Internal Reset Function

- Power-on reset (POR) function
 - 1) POR reset is generated only at power-on time.
 - 2) The POR release level can be selected from 8 levels (1.67V, 1.97V, 2.07V, 2.37V, 2.57V, 2.87V, 3.86V and 4.35V) through option configuration.
- Low-voltage detection reset (LVD) function
 - 1) LVD and POR functions are combined to generate resets when power is turned on and when power voltage falls below a certain level.
 - 2) The use/disuse of the LVD function and the low voltage threshold level (7 levels: 1.91V, 2.01V, 2.31V, 2.51V, 2.81V, 3.79V, 4.28V).

■Standby Function

- HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.
 - 1) Oscillation is not halted automatically.
 - 2) There are three ways of resetting the HALT mode.
 - (1) Setting the reset pin to the low level
 - (2) System resetting by watchdog timer or low-voltage detection
 - (3) Occurrence of an interrupt
- HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
 - 1) The CF, RC and crystal oscillators automatically stop operation.
- 2) There are four ways of resetting the HOLD mode.
 - (1) Setting the reset pin to the lower level.
 - (2) System resetting by watchdog timer or low-voltage detection
 - (3) Having an interrupt source established at either INT0, INT1, INT2 or INT4
 - * INTO and INT1 HOLD mode reset is available only when level detection is set.
 - (4) Having an interrupt source established at port 0.
- X'tal HOLD mode: Suspends instruction execution and the operation of the peripheral circuits except the base timer.
 - 1) The CF and RC oscillator automatically stop operation.
 - 2) The state of crystal oscillation established when the X'tal HOLD mode is entered is retained.
 - 3) There are five ways of resetting the X'tal HOLD mode.
 - (1) Setting the reset pin to the low level.
 - (2) System resetting by watchdog timer or low-voltage detection.
 - (3) Having an interrupt source established at either INT0, INT1, INT2 or INT4
 - * INTO and INT1 HOLD mode reset is available only when level detection is set.
 - (4) Having an interrupt source established at port 0.
 - (5) Having an interrupt source established in the base timer circuit.

Note: Available only when X'tal oscillation is selected.

■On-chip Debugger

• Supports software debugging with the IC mounted on the target board.

■Data Security Function (flash versions only)

• Protects the program data stored in flash memory from unauthorized read or copy. Note: This data security function does not necessarily provide absolute data security.

■Package Form

• QFP36 (7×7): Lead-/Halogen-free type

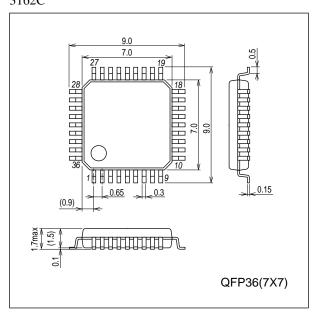
■Development Tools

• On-chip debugger: TCB87 type C + LC87F0808A

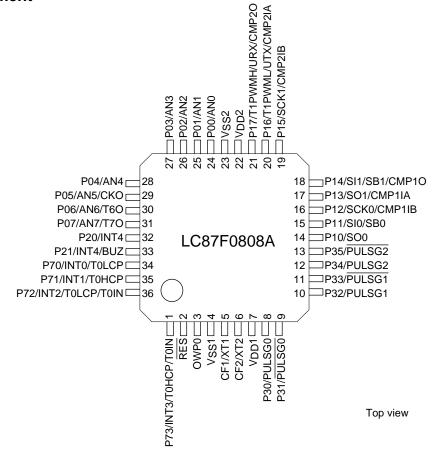
■Programming Boards

Package	Programming boards
QFP36(7×7)	W87F24Q

■Flash ROM Programmer


Maker		Model	Supported Version	Device
	Single Programmer	AF9709/AF9709B/AF9709C (Including Ando Electric Co., Ltd. models)	Rev 03.28 or later	87f008SU (3B247)
Flash Support Group, Inc. (FSG)	Gang	AF9723/AF9723B(Main body) (Including Ando Electric Co., Ltd. models)	-	-
	Programmer AF9833(Unit) (Including Ando Electric Co., Ltd. models)		-	-
Our company	Single/Gang Programmer Gang Programmer	SKK/SKK Type B (SanyoFWS) SKK-4G (SanyoFWS)	Application Version 1.06 or later Chip Data Version 2.26 or later Application Version	LC87F0808
	In-circuit/Gang Programmer	SKK-DBG Type C (SanyoFWS)	1.06 or later Chip Data Version 2.31 or later	

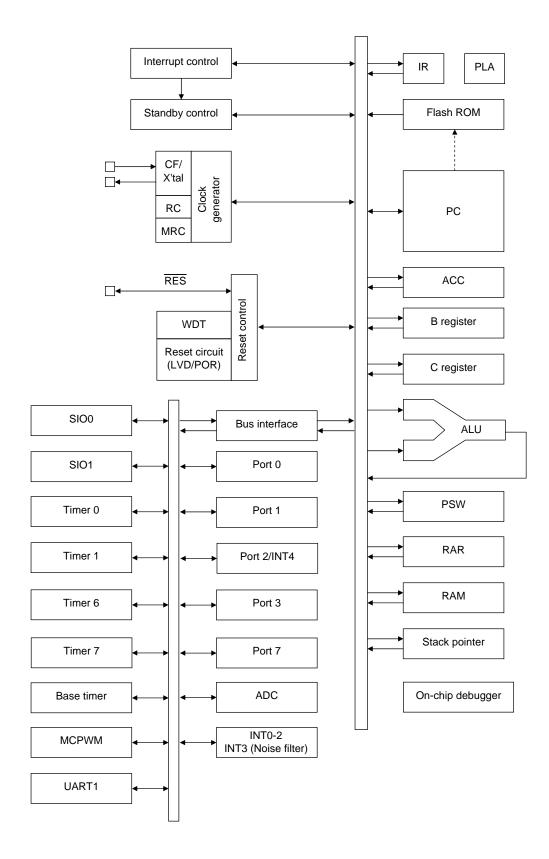
For information about AF-Series:


Flash Support Group, Inc. TEL: +81-53-459-1050 E-mail: sales@j-fsg.co.jp

Package Dimensions

unit : mm (typ) 3162C

Pin Assignment



QFP36 (7×7) "Lead-/Halogen-free Type"

QFP36	NAME
1	P73/INT3/T0HCP/T0IN
2	RES
3	OWP0
4	V _{SS} 1
5	CF1/XT1
6	CF2/XT2
7	V _{DD} 1
8	P30/PULSG0
9	P31/PULSG0
10	P32/PULSG1
11	P33/PULSG1
12	P34/PULSG2
13	P35/PULSG2
14	P10/SO0
15	P11/SI0/SB0
16	P12/SCK0/CMP1IB(+)
17	P13/SO1/CMP1IA(-)
18	P14/SI1/SB1/CMP1O

QFP36	NAME
19	P15/SCK1/CMP2IB(+)
20	P16/T1PWML/UTX/CMP2IA(-)
21	P17/T1PWMH/URX/CMP2O
22	V _{DD} 2
23	V _{SS} 2
24	P00/AN0
25	P01/AN1
26	P02/AN2
27	P03/AN3
28	P04/AN4
29	P05/AN5/CKO
30	P06/AN6/T6O
31	P07/AN7/T7O
32	P20/INT4
33	P21/INT4/BUZ
34	P70/INT0/T0LCP
35	P71/INT1/T0HCP
36	P72/INT2/T0LCP/T0IN

System Block Diagram

Pin Description

Pin Name	I/O		De	scription			Option	
V _{SS} 1,V _{SS} 2	-	- Power supply pins					No	
V _{DD} 1, V _{DD} 2	-	+ Power supply pins	No					
Port 0	I/O	8-bit I/O port						
P00 to P07		I/O specifiable in 4-bit units						
1 00 10 1 07		Pull-up resistors can be turned or	n and off in 4	I-bit units.				
		HOLD reset input						
		Port 0 interrupt input						
		Pin functions					Yes	
		P05: System clock output						
		P06: Timer 6 toggle output						
		P07: Timer 7 toggle output						
		P00 (AN0) to P07 (AN7): AD conv	verter input					
Port 1	I/O	• 8-bit I/O port						
P10 to P17		I/O specifiable in 1-bit units	I/O specifiable in 1-bit units					
	Pull-up resistors can be turned on and off in 1-bit units.							
		Pin functions						
		P10: SIO0 data output	P14: SIC	01 data input / bu	s I/O			
		P11: SIO0 data input/bus I/O	P15: SIC	01 clock I/O				
		P12: SIO0 clock I/O	P16: Tin	ner 1 PWML outp	ut / UART transr	mit		
		P13: SIO1 data output	P17: Tin	ner 1 PWMH outp	out / UART recei	ve	Yes	
							103	
		P12 to P17: analog comparator /	•	pins				
		P12: CMP1(+) input / AMP1(+)	•					
		P13: CMP1(-) input / AMP1(-) ir	•					
		P14: CMP1 output / AMP1 outp						
		P15: CMP2(+) input / AMP2(+)	•					
		P16: CMP2(-) input / AMP2(-) in	•					
D. 10	1/0	P17: CMP2 output / AMP2 outp	out					
Port 2	I/O	• 2-bit I/O port						
P20 to P21		I/O specifiable in 1-bit units	and affin (l hit unita				
		 Pull-up resistors can be turned or Pin functions 	i and oil in	i-bit units.				
		P21: Beeper output P20 to P21: INT4 input/HOLD res	ot input/time	or 1 ovent input/tie	mor OL capturo i	nnut/		
		timer 0H capture inpu		ar reventinputtii	nei or capture i	прил	Yes	
		Interrupt acknowledge types						
				Diging 9				
		Rising	Falling	Rising & Falling	H level	L level		
		INT4 anable	onabla		diaabla	diaabla		
		INT4 enable	enable	enable	disable	disable		
Dort 2	I/O	- C hit I/O nort						
Port 3	1/0	6-bit I/O port I/O specifiable in 1-bit units						
P30 to P35		Pull-up resistors can be turned or	and off in 1	Lhit unite				
		Pin functions	i and on in	i-bit utilis.				
		P30 to p35 : motor control PWM	output nine					
		P30: PULSG0 output	output piris				Yes	
		P31: PULSGO output					103	
		P32: PULSG1 output						
		P33: PULSG1 output						
		P34: PULSG2 output						
		P35: PULSG2 output						

Continued on next page.

Continued from preceding page.

Pin Name	I/O			Des	cription			Option	
Port 7	I/O	• 4-bit I/O port	•						
P70 to P73		I/O specifiable							
			Il-up resistors can be turned on and off in 1-bit units.						
		Pin functions							
		P70: INT0 input			•				
		P71: INT1 input	/HOLD reset in	put/timer 0H cap	oture input				
		P72: INT2 input	/HOLD reset in	put/timer 0 even	t input / timer 0L	capture input			
			•	er)/ timer 0 even	t input/timer 0H o	apture input			
		Interrupt acknow	wledge types	•	ı	Ī		No	
			Rising	Falling	Rising & Falling	H level	L level		
		INT0	enable	enable	disable	enable	enable		
		INT1	enable	enable	disable	enable	enable		
		INT2	enable	enable	enable	disable	disable		
		INT3	enable	enable	enable	disable	disable		
OWP0	I/O	On-chip debugge	r (exclusive pin)				No	
RES	I/O	External reset in	out/internal rese	t output				No	
CF1/XT1	ı	Ceramic resona	ator or 32.768kH	Iz crystal oscilla	ator input pin				
		Pin function							
		General-purpos	General-purpose input port						
CF2/XT2	I/O	Ceramic resonation	ator or 32.768kh	Iz crystal oscilla	ator output pin				
		Pin function		-				No	
		General-purpos	e input port						

Port Output Types

The table below lists the types of port outputs and the presence/absence of a pull-up resistor.

Data can be read into any input port even if it is in the output mode.

Port Name	Option selected in units of	Option type	Output type	Pull-up resistor
P00 to P07	1 bit	1	CMOS	Programmable (Note 1)
		2	Nch-open drain	No
P10 to P17	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P20 to P21	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P30 to P35	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P70 to P73	-	No	CMOS	Programmable

Note 1: The control of the presence or absence of the programmable pull-up resistors for port 0 and the switching between low-and high-impedance pull-up connection is exercised in nibble (4-bit) units (P00 to 03 or P04 to 07).

User Option Table

Option name	Option to be applied on	Flash-rom version	Option selected in units of	Option selection
Port output type	P00 to P07	0	1 bit	CMOS
				Nch-open drain
	P10 to P17	0	1 bit	CMOS
				Nch-open drain
	P20 to P21	0	1 bit	CMOS
				Nch-open drain
	P30 to P35	0	1 bit	CMOS
				Nch-open drain
Program start	-	0	-	00000h
address				01E00h
Protect area	-	0	-	00000h to 01BFFh
(Note 1)				01C00h to 01EFFh
Low-voltage	Detect function	0	-	Enable: Use
detection reset				Disable: Not Used
function	Detect level	0	-	7-level
Power-on reset function	Power-On reset level	0	-	8-level

(Note 1) This option selects the area to be write protected at the time of the On-board writing.

Recommended Unused Pin Connections

Port Name P00 to P07 P10 to P17 P20 to P21 P30 to P35	Recommended unused pin connections					
Port Name	Board	Software				
P00 to P07	Open	Output low				
P10 to P17	Open	Output low				
P20 to P21	Open	Output low				
P30 to P35	Open	Output low				
P70 to P73	Open	Output low				
CF1/XT1	Pulled low with a 100kΩ resistor or less	General-purpose input port				
CF2/XT2	Pulled low with a $100k\Omega$ resistor or less	General-purpose input port				

On-chip Debugger Pin Connection Requirements

OWP0 of the On-chip-debugger terminal must add pull-down resistor of $100k\Omega.$ The connection with TCB87 Type C are OWP0/VDD/VSS

Note: Be sure to electrically short-circuit between the V_{SS1} and V_{SS2} pins and between the V_{DD1} and V_{DD2} pins.

Absolute Maximum Ratings at $Ta=25^{\circ}C$, $V_{SS}1=V_{SS}2=0V$

							0		
	Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	ication max	unit
	aximum supply	V _{DD} max	V _{DD} 1		_ ∧DD[∧]	-0.3	цур	+6.5	unit
	out voltage	VI	CF1			-0.3		V _{DD} +0.3	
	out/output ltage	V _{IO}	CF2 Ports 0, 1, 2, 3 Port 7			-0.3		V _{DD} +0.3	V
rent	Peak output current	IOPH(1)	Ports 0, 1, 2, 3	CMOS output select Per 1 applicable pin		-10			
t cur		IOPH(2)	Port7	Per 1 applicable pin		-5			
High level output current	Mean output current	IOMH(1)	Ports 0, 1, 2, 3	CMOS output select Per 1 applicable pin		-7.5			
leve	(Note 1-1)	IOMH(2)	Port7	Per 1 applicable pin		-3			
ligh	Total output	ΣΙΟΑΗ(1)	Ports 0, 2, 7	Total of all applicable pins		-25			
_	current	ΣΙΟΑΗ(2)	Ports 1, 3	Total of all applicable pins		-25			
	Peak output current	IOPL(1)	P02 to P07 Ports 1, 2, 3	Per 1 applicable pin				20	mA
ent		IOPL(2)	P00, P01	Per 1 applicable pin				30	
curr		IOPL(3)	Port 7	Per 1 applicable pin				10	
Low level output current	Mean output current	IOML(1)	P02 to P07 Ports 1, 2, 3	Per 1 applicable pin				15	
evel	(Note 1-1)	IOML(2)	P00, P01	Per 1 applicable pin				20	
wo-		IOML(3)	Port 7	Per 1 applicable pin				7.5	
1	Total output	ΣIOAL(1)	Ports 0, 2, 7	Total of all applicable pins				45	
	current	ΣIOAL(2)	Ports 1, 3	Total of all applicable pins				45	
	wer ssipation	Pd max(1)	QFP36(7×7)	Ta=-40 to +85°C Package only			115		
		Pd max(2)		Ta=-40 to +85°C Package with thermal resistance board (Note 1-2)				244	mW
	perating ambient mperature	Topr				-40		+85	
	orage ambient nperature	Tstg				-55		+125	°C

Note 1-1: The mean output current is a mean value measured over 100ms.

Note 1-2: SEMI standards thermal resistance board (size: 76.1×114.3×1.6tmm, glass epoxy) is used.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Allowable Operating Conditions at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = 0V$

Danamatan	O mala al	Dia /Damania	O and distance			Specif	ication	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Operating supply voltage	V _{DD}	V _{DD} 1, V _{DD} 2	0.142μs ≤ tCYC ≤ 200μs		3.3		5.5	
Memory sustaining supply voltage	VHD	V _{DD} 1, V _{DD} 2	RAM and register contents sustained in HOLD mode.		2.0			
High level	V _{IH} (1)	Ports 1, 2, 3, 7		3.3 to 5.5	0.3V _{DD} +0.7		V_{DD}	
input voltage	V _{IH} (2)	Ports 0		3.3 to 5.5	0.3V _{DD} +0.7		V_{DD}	V
	V _{IH} (3)	CF1, CF2, RES		3.3 to 5.5	0.75V _{DD}		V_{DD}	·
Low level	V _{IL} (1)	Ports 1, 2, 3, 7		4.0 to 5.5	V _{SS}		0.1V _{DD} +0.4	
input voltage				3.3 to 4.0	V _{SS}		0.2V _{DD}	
	V _{IL} (2)	Ports 0		4.0 to 5.5	V _{SS}		0.15V _{DD} +0.4	
				3.3 to 4.0	V _{SS}		0.2V _{DD}	
	V _{IL} (3)	CF1, CF2, RES		3.3 to 5.5	V _{SS}		0.25V _{DD}	
Instruction cycle time (Note 2-1)	tCYC			3.3 to 5.5	0.142		200	μs
External system clock frequency	FEXCF	CF1	CF2 pin open System clock frequency division ratio=1/1 External system clock duty=50±5%	3.3 to 5.5	0.1		20	
Oscillation frequency	FmCF(1)	CF1, CF2	20MHz ceramic oscillation See Fig. 1.	3.3 to 5.5		20		
range (Note 2-2)	FmCF(2)	CF1, CF2	10MHz ceramic oscillation See Fig. 1.	3.3 to 5.5		10		MHz
	FmCF(3)	CF1, CF2	4MHz ceramic oscillation See Fig. 1.	3.3 to 5.5		4		
	FmMRC		Internal High-speed RC oscillation. 1/2 frequency division ration. (RCCTD=0) (Note 2-3)	3.3 to 5.5	19.0	20.0	21.0	
	FmRC		Internal medium-speed RC oscillation	3.3 to 5.5	0.5	1.0	2.0	
	FmSRC		Internal low-speed RC oscillation	3.3 to 5.5	15	30	60	
High level input voltage Low level input voltage Instruction cycle time (Note 2-1) External system clock frequency Oscillation frequency range	FsX'tal	XT1, XT2	32.768kHz crystal oscillation See Fig. 1.	3.3 to 5.5		32.768		kHz

Note 2-1: Relationship between tCYC and oscillation frequency is 3/FmCF at a division ratio of 1/1 and 6/FmCF at a division ratio of 1/2.

Note 2-2: See Tables 1 and 2 for the oscillation constants.

Note 2-3: When switching the system clock, allow an oscillation stabilization time of 100µs or longer after the high-speed RC oscillator circuit transmits from the "oscillation stopped" to "oscillation enabled" state.

Electrical Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = 0V$

Parameter	Symbol	Pin/Remarks	Conditions			Specifica	ation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High level input current	I _{IH} (1)	Ports 0, 1, 2, 3 Port 7 RES	Output disabled Pull-up resistor off VIN=VDD (Including output Tr's off leakage current)	3.3 to 5.5			1	
	I _{IH} (2)	CF1, CF2	V _{IN} =V _{DD}	3.3 to 5.5			15	
Low level input current	I _{IL} (1)	Ports 0, 1, 2, 3 Port 7 RES	Output disabled Pull-up resistor off VIN=VSS (Including output Tr's off leakage current)	3.3 to 5.5	-1			μΑ
	I _{IL} (2)	CF1, CF2	V _{IN} =V _{SS}	3.3 to 5.5	-15			
High level output	V _{OH} (1)	Ports 0, 1, 2, 7	I _{OH} =-1mA	4.5 to 5.5	V _{DD} -1			
voltage	V _{OH} (2)		I _{OH} =-0.35mA	3.3 to 5.5	V _{DD} -0.4			
	V _{OH} (3)	Port 3	I _{OH} =-6mA	4.5 to 5.5	V _{DD} -1			
	V _{OH} (4)		I _{OH} =-1.4mA	3.3 to 5.5	V _{DD} -0.4			
Low level output	V _{OL} (1)	Ports 0, 1, 2, 3	I _{OL} =10mA	4.5 to 5.5			1.5	V
voltage	V _{OL} (2)		I _{OL} =1.4mA	3.3 to 5.5			0.4	
	V _{OL} (3)	Port 7	I _{OL} =1.4mA	3.3 to 5.5			0.4	
	V _{OL} (4)	P00, P01	I _{OL} =25mA	4.5 to 5.5			1.5	
	V _{OL} (5)		I _{OL} =4mA	3.3 to 5.5			0.4	
Pull-up resistance	Rpu(1)	Ports 0, 1, 2, 3 Port 7	V _{OH} =0.9V _{DD} When Port 0 selected low-impedance pull-up.	4.5 to 5.5	15	35	80	1.0
	Rpu(2)	Port 0	V _{OH} =0.9V _{DD} When Port 0 selected high-impedance pull-up.	3.3 to 5.5	100	210	400	kΩ
Hysteresis voltage	VHYS	Ports 1, 2, 3, 7 RES	When Port 2 selected INT4.	3.3 to 5.5		0.1V _{DD}		V
Pin capacitance	СР	All pins	For pins other than that under test: VIN=VSS f=1MHz Ta=25°C	3.3 to 5.5		10		pF

Serial I/O Characteristics at $Ta=-40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1=V_{SS}2=0V$ SIO0 Serial I/O Characteristics (Note 4-1-1)

		Parameter	Cumahad	Pin/	Conditions			Speci	fication	
		Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
		Frequency	tSCK(1)	SCK0(P12)	• See Fig. 5.		2			
	Input clock	Low level pulse width	tSCKL(1)			3.3 to 5.5	1			
Serial clock	ndul	High level pulse width	tSCKH(1)				1			tCYC
erial	k	Frequency	tSCK(2)	SCK0(P12)	CMOS output selected		4/3			
S	out clock	Low level pulse width	tSCKL(2)		• See Fig. 5.	3.3 to 5.5		1/2		+00K
	Output	High level pulse width	tSCKH(2)				1/2			tSCK
Serial input	Da	ta setup time	tsDI(1)	SB0(P11), SI0(P11)	Must be specified with respect to rising edge of	3.3 to 5.5	0.05			
Seria	Da	ta hold time	thDI(1)		SIOCLK. • See Fig. 5.	3.3 10 5.5	0.05			
	Input clock	Output delay time	tdD0(1)	SO0(P10), SB0(P11)	Continuous data transmission/reception mode (Note 4-1-2)				(1/3)tCYC +0.08	μs
Serial output	ıdul		tdD0(2)		• Synchronous 8-bit mode (Note 4-1-2)	3.3 to 5.5			1tCYC +0.08	μο
Serial	Output clock		tdD0(3)		(Note 4-1-2)	3.3 10 3.5			(1/3)tCYC +0.08	

Note 4-1-1: These specifications are theoretical values. Add margin depending on its use.

Note 4-1-2: Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 5.

SIO1 Serial I/O Characteristics (Note 4-2-1)

		D	O: week ed	Pin/	O and distance			Spec	ification	
		Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
	¥	Frequency	tSCK(3)	SCK1(P15)	See Fig. 5.		2			
	Input clock	Low level pulse width	tSCKL(3)			3.3 to 5.5	1			
clock	ū	High level pulse width	tSCKH(3)				1			tCYC
Serial clock	충	Frequency	tSCK(4)	SCK1(P15)	CMOS output selected See Fig. 5.		2			
	Output clock	Low level pulse width	tSCKL(4)			3.3 to 5.5		1/2		tSCK
	nO	High level pulse width	tSCKH(4)	H(4)		1/2				ISUN
Serial input	Da	ata setup time	tsDI(2)	SB1(P14), SI1(P14)	Must be specified with respect to rising edge of SIOCLK. See Fig. 5.	001.55	0.05			
Serial	Da	ata hold time	thDI(2)			3.3 to 5.5	0.05			
Serial output		ttput delay time	tdD0(4)	SO1(P13), SB1(P14)	Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 5.	3.3 to 5.5			(1/3)tCYC +0.08	μѕ

Note 4-2-1: These specifications are theoretical values. Add margin depending on its use.

Pulse Input Conditions at Ta = -40°C to +85°C, $V_SS1 = V_SS2 = 0V$

Danamatan	0	Pin/Remarks	On a distance			Speci	fication	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High/low level pulse width	tPIH(1) tPIL(1)	INT0(P70), INT1(P71), INT2(P72), INT4(P20 to P21)	(P71), • Event inputs for timer 0 or 1 are enabled.		1			
	tPIH(2) tPIL(2)	INT3(P73) when noise filter time constant is 1/1	Interrupt source flag can be set.Event inputs for timer 0 are enabled.	3.3 to 5.5	2			tCYC
	tPIH(3) tPIL(3)	INT3(P73) when noise filter time constant is 1/32	Interrupt source flag can be set. Event inputs for timer 0 are nabled.	3.3 to 5.5	64			
	tPIH(4) tPIL(4)	INT3(P73) when noise filter time constant is 1/128	Interrupt source flag can be set.Event inputs for timer 0 are enabled.	3.3 to 5.5	256			
	tPIL(5)	RES	Resetting is enabled.	3.3 to 5.5	200			μs

AD Converter Characteristics at $V_{SS}1 = V_{SS}2 = 0V$

10bits AD Converter Mode/Ta = -40° C to $+85^{\circ}$ C

Parameter	Symbol	Pin/Remarks	Conditions		Specification			
Parameter	Symbol	1 III/IVeIIIaiks	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	N	AN0(P00) to		3.3 to 5.5		10		bit
Absolute accuracy	ET	AN7(P07) AN8(AMP1O)	(Note 6-1)	3.3 to 5.5			±16	LSB
Conversion time	TCAD	AN9(AMP2O)	See Conversion time calculation formulas. (Note 6-2)	3.3 to 5.5	8.5		59.5	μs
Analog input voltage range	VAIN			3.3 to 5.5	VSS		V_{DD}	٧
Analog port	IAINH		VAIN=V _{DD}	3.3 to 5.5			1	•
input current	IAINL		VAIN=V _{SS}	3.3 to 5.5	-1			μΑ

8bits AD Converter Mode/Ta = -40° C to $+85^{\circ}$ C

D	O was boat	Pin/Remarks	O a malikia ma		Specification				
Parameter	Symbol	Fill/IXemaiks	Conditions	V _{DD} [V]	min	typ	max	unit	
Resolution	N	AN0(P00) to		3.3 to 5.5		8		bit	
Absolute accuracy	ET	AN7(P07) AN8(AMP1O)	(Note 6-1)	3.3 to 5.5			±1.5	LSB	
Conversion time	TCAD	AN9(AMP2O)	See Conversion time calculation formulas. (Note 6-2)	3.3 to 5.5	2.9		20	μs	
Analog input voltage range	VAIN			3.3 to 5.5	VSS		V_{DD}	V	
Analog port	IAINH		VAIN=V _{DD}	3.3 to 5.5			1		
input current	IAINL		VAIN=V _{SS}	3.3 to 5.5	-1		·	μΑ	

Conversion time calculation formulas:

10bits AD Converter Mode: TCAD (Conversion time) = $((42/(AD \text{ division ratio}))+2)\times(1/3)\times tCYC$ 8bits AD Converter Mode: TCAD (Conversion time) = $((28/(AD \text{ division ratio}))+2)\times(1/3)\times tCYC$

External oscillation	Operating supply voltage range	System division ratio	Cycle time		sion ratio DIV)	AD conversion time (TCAD)	
(FmCF)	(V _{DD})	(SYSDIV)	(tCYC)	10bit AD	8bit AD	10bit AD	8bit AD
CF-20MHz	3.3V to 5.5V	1/1	150ns	1/4	1/2	8.5μs	2.9µs
CF-10MHz	3.3V to 5.5V	1/1	300ns	1/4	1/2	17μs	5.8µs
CF-4MHz	3.3V to 5.5V	1/1	750ns	1/4	1/2	42.5μs	14.5μs

- Note 6-1: The quantization error $(\pm 1/2LSB)$ must be excluded from the absolute accuracy. The absolute accuracy must be measured in the microcontroller's state in which no I/O operations occur at the pins adjacent to the analog input channel.
- Note 6-2: The conversion time refers to the period from the time an instruction for starting a conversion process till the time the conversion results register(s) are loaded with a complete digital conversion value corresponding to the analog input value.

The conversion time is 2 times the normal-time conversion time when:

- The first AD conversion is performed in the 10-bit AD conversion mode after a system reset.
- The first AD conversion is performed after the AD conversion mode is switched from 8-bit to 10-bit conversion mode.

Power-on Reset (POR) Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1=V_{SS}2=0V$

						Specif	ication	
Parameter	Symbol	Pin/Remarks	Conditions	Option selected voltage	min	typ	max	unit
POR release	PORRL		Select from option.	1.67V	1.55	1.67	1.79	
voltage			(Note 7-1)	1.97V	1.85	1.97	2.09	
				2.07V	1.95	2.07	2.19	
				2.37V	2.25	2.37	2.49	
				2.57V	2.45	2.57	2.69	
				2.87V	2.75	2.87	2.99	V
				3.86V	3.73	3.86	3.99	
				4.35V	4.21	4.35	4.49	
Detection voltage unknown state	POUKS		• See Fig. 7. (Note 7-2)			0.7	0.95	
Power supply rise time	PORIS		Power supply rise time from 0V to 1.6V.				100	ms

Note7-1: The POR release level can be selected out of 8 levels only when the LVD reset function is disabled.

Note7-2: POR is in an unknown state before transistors start operation.

						Specific	cation	
Parameter	Symbol	Pin/Remarks	Conditions	Option selected voltage	min	typ	max	unit
LVD reset voltage	LVDET		Select from option.	1.91V	1.81	1.91	2.01	
(Note 8-2)			(Note 8-1)	2.01V	1.91	2.01	2.11	
			(Note 8-3) • See Fig. 8.	2.31V	2.21	2.31	2.41	
			• See Fig. 6.	2.51V	2.41	2.51	2.61	V
				2.81V	2.71	2.81	2.91	
				3.79V	3.69	3.79	3.89	
				4.28V	4.18	4.28	4.38	
LVD hysteresys	LVHYS			1.91V		55		
width				2.01V		55		
				2.31V		55		
				2.51V		55		mV
				2.81V		60		
				3.79V		65		
				4.28V		65		
Detection voltage unknown state	LVUKS		• See Fig. 8. (Note 8-4)			0.7	0.95	V
Low voltage detection minimum width (Reply sensitivity)	TLVDW		• LVDET-0.5V • See Fig. 9.		0.2			ms

Note8-1: The LVD reset level can be selected out of 7 levels only when the LVD reset function is enabled.

Note8-2: LVD reset voltage specification values do not include hysteresis voltage.

Note8-3: LVD reset voltage may exceed its specification values when port output state changes and/or when a large current flows through port.

Note8-4: LVD is in an unknown state before transistors start operation.

Comparator, Operational Amplifiers Characteristics at Ta=-40 to +85°C, $V_{SS}1=V_{SS}2=0V$

F eti e e	Parameter	O. mala ad	Pin/Remarks	Conditions			Spec	ification		
Function	Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
CMP1, 2	Input common- mode voltage (Note9-1)	VCMIN	CMP1IA, CMP1IB CMP2IA, CMP2IB		3.3 to 5.5	V _{SS}		V _{DD} - 1.5V	V	
	Offset voltage	VOFF(1)	CMP1IA, CMP1IB CMP2IA, CMP2IB	Input common-mode voltage range	3.3 to 5.5			20	mV	
	CMP response speed	tCRT	CMP1O CMP2O	Input common-mode voltage range Input amplitude=100mV Over drive=50mV	3.3 to 5.5		200		ns	
AMP1, 2	AMP input voltage (Note9-1)	VAMIN	CMP1IA, CPM2IA		3.3 to 5.5	V _{SS}		V _{DD} - 1.5V	V	
	Input offset voltage	VOPOFF	CMP1IA, CMP1IB CMP2IA, CMP2IB	Input common-mode voltage range	3.3 to 5.5			20	mV	
	Slew rate	SR	CMP1O CMP2O	50pF	5.0		3		V/μs	
	Output current	Source	IoSource	CMP1IA,CMP1IB(+)=1V CMP2IA,CMP2IB(-)=0V CMP1O,CMP2O=V _{DD} -1.5V	5.0	2.5	3.5		mA	
		Sink	IoSink	CMP1IA,CMP1IB(+)=0V CMP2IA,CMP2IB(-)=1V CMP1O,CMP2O=V _{DD} +0.5V	5.0	0.3	0.35		mA	

Note9-1: When V_{DD}=5V, input voltage is effective from 0 to 3.5V.

Consumption Current Characteristics at Ta = -40°C to +85°C, $V_{SS}1 = V_{SS}2 = 0V$

Darameter	Cumbal	Pin/	Conditions			Specif	fication	
Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Normal mode consumption current (Note 10-1)	IDDOP(1)	V _{DD} 1, V _{DD} 2	FmCF=20MHz ceramic oscillation mode System clock set to 20MHz side All internal RC oscillation stopped. 1/1 frequency division ratio	3.3 to 5.5		10	12.5	
(Note 10-2)	IDDOP(2)		FmCF=4MHz ceramic oscillation mode System clock set to 4MHz side All internal RC oscillation stopped. 1/1 frequency division ratio	3.3 to 5.5		3	4.1	
	IDDOP(3)		FsX'tal=32.768kHz crystal oscillation mode Internal medium speed RC oscillation stopped. System clock set to internal high speed RC oscillation (20MHz). 1/1 frequency division ratio	3.3 to 5.5		9.2	11	mA
	IDDOP(4)		FsX'tal=32.768kHz crystal oscillation mode Internal high speed RC oscillation stopped. System clock set to internal medium speed RC oscillation. 1/2 frequency division ratio	3.3 to 5.5		0.5	0.7	
	IDDOP(5)		FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz crystal oscillation. All internal RC oscillation stopped. 1/1 frequency division ratio	3.3 to 5.5		32	74	μА
HALT mode consumption current (Note 10-1) (Note 10-2)	IDDHALT(1)	V _{DD} 1, V _{DD} 2	HALT mode FmCF=20MHz ceramic oscillation mode System clock set to 20MHz side All internal RC oscillation stopped. 1/1 frequency division ratio	3.3 to 5.5		4.7	5.8	
	IDDHALT(2)		HALT mode FmCF=4MHz ceramic oscillation mode System clock set to 4MHz side All internal RC oscillation stopped. 1/1 frequency division ratio	3.3 to 5.5		1.5	2.3	
	IDDHALT(3)		HALT mode FsX'tal=32.768kHz crystal oscillation mode Internal medium speed RC oscillation stopped. System clock set to internal high speed RC oscillation (20MHz). 1/1 frequency division ratio	3.3 to 5.5		4	5	mA
	IDDHALT(4)		HALT mode FsX'tal=32.768kHz crystal oscillation mode Internal high speed RC oscillation stopped. System clock set to internal medium speed RC oscillation. 1/2 frequency division ratio	3.3 to 5.5		0.3	0.45	
	IDDHALT(5)		HALT mode FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz crystal oscillation. All internal RC oscillation stopped. 1/1 frequency division ratio	3.3 to 5.5		16	60	μА

Note10-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

Note10-2: The consumption current values do not include operational current of LVD function if not specified.

Continued on next page.

Continued from preceding page.

Danamatan	Parameter Symbol Pin/ Remarks		Condition -		Specification				
Parameter			Conditions	V _{DD} [V]	min	typ	max	unit	
HOLD mode	IDDHOLD(1)	V _{DD} 1,	HOLD mode						
consumption		V_{DD}^2	CF1=V _{DD} or open	3.3 to 5.5		0.03	32		
current			(External clock mode)						
(Note 10-1)	IDDHOLD(2)		HOLD mode					μΑ	
(Note 10-2)			• CF1=V _{DD} or open	224055		2	35		
(Note 10-3)			(External clock mode)	3.3 to 5.5		3	35		
			LVD option selected						

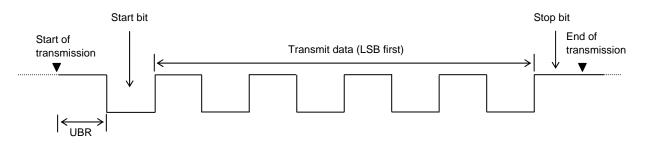
- Note10-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.
- Note10-2: The consumption current values do not include operational current of LVD function if not specified.

Note10-3: The amplifier / comparator circuit operates in the HOLD mode.

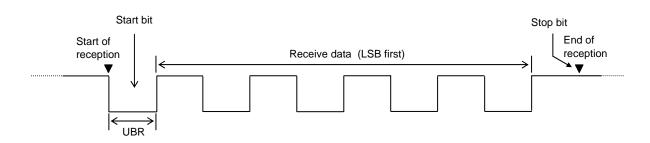
F-ROM Programming Characteristics at Ta = -40 °C to +85 °C, VSS1 = VSS2 = 0V

Parameter	Symbol	Pin/Remarks	O and the man					
			Conditions	V _{DD} [V]	min	typ	max	unit
Onboard	IDDFW(1)	V _{DD} 1, V _{DD} 2	Only current of the flash block.					
programming				3.3 to 5.5		5	10	mA
current								
Programming	tFW(1)		Erasing time	001.55		20	30	ms
time	tFW(2)		Programming time	3.3 to 5.5		40	60	μs

UART (Full Duplex) Operating Conditions at Ta = -40°C to +85°C, VSS1 = VSS2 = 0V


Parameter	Symbol	Pin/Remarks	O and distance		Specification				
			Conditions	V _{DD} [V]	min	typ	max	unit	
Transfer rate	UBR	UTX(P16) URX(P17)		3.3 to 5.5	16/3		8192/3	tCYC	

Data length : 7/8/9 bits (LSB first)


Stop bits : 1 bit (2-bit in continuous data transmission)

Parity bits : None

Example of Continuous 8-bit Data Transmission Mode Processing (First Transmit Data=55H)

Example of Continuous 8-bit Data Reception Mode Processing (First Receive Data=55H)

Characteristics of a Sample Main System Clock Oscillation Circuit

Given below are the characteristics of a sample main system clock oscillation circuit that are measured using a Our designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 1 Characteristics of a Sample Main System Clock Oscillator Circuit with a Ceramic Oscillator

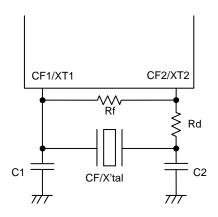
■MURATA

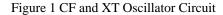
Nominal Frequency	Туре	Oscillator Name	Circuit Constant				Operating	Oscillation Stabilization Time		
			C1 [pF]	C2 [pF]	Rf [Ω]	Rd [Ω]	Voltage Range [V]	typ [ms]	max [ms]	Remarks
20MHz	SMD	CSTCE20M0G51-R0	(5)	(5)	Open	470	3.3 to 5.5	0.02		
	LEAD	CSTLS20M0G52-B0	(5)	(5)	Open	330	3.3 to 5.5	0.06		
10MHz	SMD	CSTCE10M0G52-R0	(10)	(10)	Open	470	3.3 to 5.5	0.02		Internal C1,C2
	LEAD	CSTLS10M0G53-B0	(15)	(15)	Open	680	3.3 to 5.5	0.02		
4MHz	SMD	CSTCR4M00G53-R0	(15)	(15)	Open	1.5k	3.3 to 5.5	0.04		
	LEAD	CSTLS4M00G53-B0	(15)	(15)	Open	1.5k	3.3 to 5.5	0.03		

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after V_{DD} goes above the operating voltage lower limit (see Figure 3).

Characteristics of a Sample Subsystem Clock Oscillator Circuit

Given below are the characteristics of a sample subsystem clock oscillation circuit that are measured using a Our designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.


Table 2 Characteristics of a Sample Subsystem Clock Oscillator Circuit with a Crystal Oscillator


■EPSON TOYOCOM

Nominal .	_	Oscillator Name	Circuit Constant				Operating	Oscillation Stabilization Time		_
	Туре		C1 [pF]	C2 [pF]	Rf [Ω]	Rd [Ω]	Voltage Range [V]	typ [s]	max [s]	Remarks
32.768kHz	SMD	MC-306	8	8	Open	330k	3.3 to 5.5	1.0	4.0	Applicable CL value = 7.0pF

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after the instruction for starting the subclock oscillation circuit is executed and to the time interval that is required for the oscillation to get stabilized after the HOLD mode is reset (see Figure 3).

Note: The components that are involved in oscillation should be placed as close to the IC and to one another as possible because they are vulnerable to the influences of the circuit pattern.

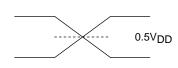
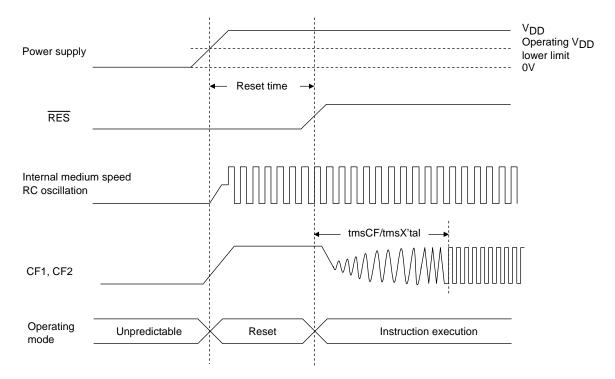
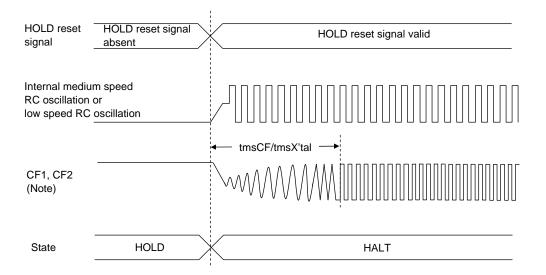
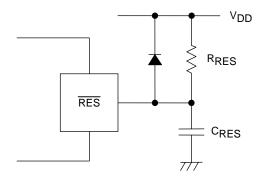




Figure 2 AC Timing Measurement Point


Reset Time and Oscillation Stabilization Time

HOLD Reset Signal and Oscillation Stabilization Time

Note: External oscillation circuit is selected.

Figure 3 Oscillation Stabilization Times

Note:

External circuits for reset may vary depending on the usage of POR and LVD. Please refer to the user's manual for more information.

Figure 4 Reset Circuit

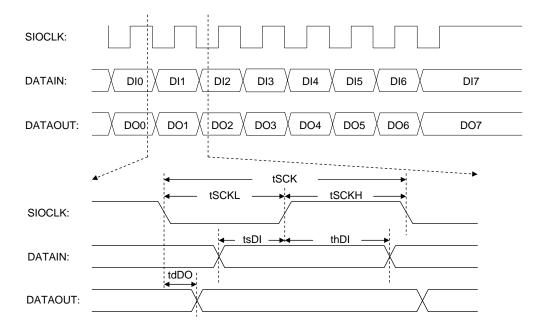


Figure 5 Serial I/O Output Waveforms

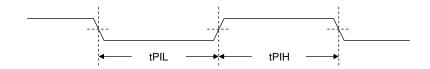


Figure 6 Pulse Input Timing Signal Waveform

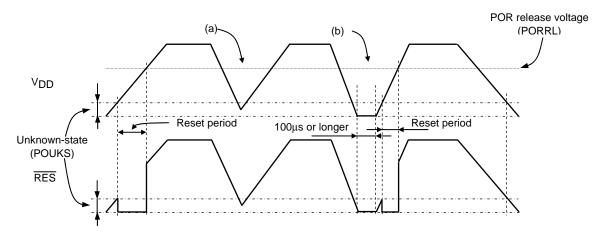


Figure 7 Waveform observed when only POR is used (LVD not used) (RESET pin: Pull-up resistor RRES only)

- The POR function generates a reset only when power is turned on starting at the VSS level.
- No stable reset will be generated if power is turned on again when the power level does not go down to the VSS level as shown in (a). If such a case is anticipated, use the LVD function together with the POR function or implement an external reset circuit.
- A reset is generated only when the power level goes down to the VSS level as shown in (b) and power is turned on again after this condition continues for 100µs or longer.

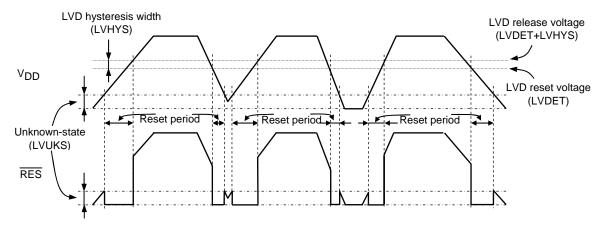


Figure 8 Waveform observed when both POR and LVD functions are used (RESET pin: Pull-up resistor R_{RES} only)

- Resets are generated both when power is turned on and when the power level lowers.
- A hysteresis width (LVHYS) is provided to prevent the repetitions of reset release and entry cycles near the detection level.

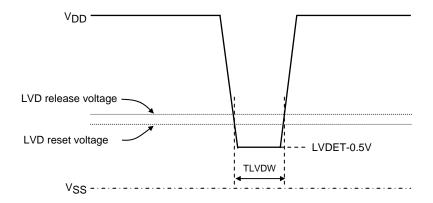


Figure 9 Low voltage detection minimum width (Example of momentary power loss/Voltage variation waveform)

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa