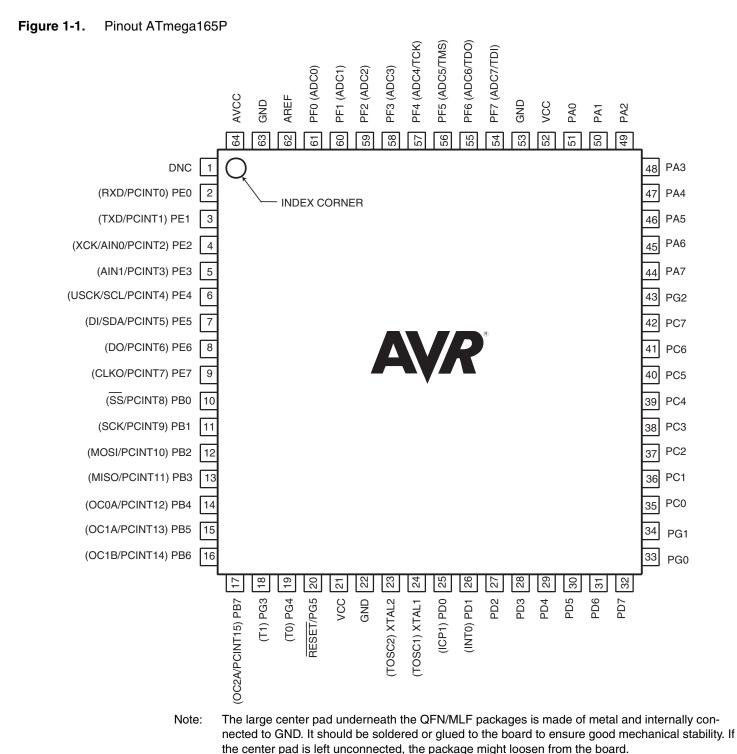
# Features

- High Performance, Low Power Atmel® AVR® 8-Bit Microcontroller
- Advanced RISC Architecture
  - 130 Powerful Instructions Most Single Clock Cycle Execution
  - 32 × 8 General Purpose Working Registers
  - Fully Static Operation
  - Up to 16 MIPS Throughput at 16 MHz
  - On-Chip 2-cycle Multiplier
- High Endurance Non-volatile Memory segments
  - 16 Kbytes of In-System Self-programmable Flash program memory
  - 512 Bytes EEPROM
  - 1 Kbytes Internal SRAM
  - Write/Erase cyles: 10,000 Flash/100,000 EEPROM<sup>(1)(3)</sup>
  - Data retention: 20 years at 85°C/100 years at 25°C<sup>(2)(3)</sup>
  - Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program True Read-While-Write Operation
  - Programming Lock for Software Security
- JTAG (IEEE std. 1149.1 compliant) Interface
  - Boundary-scan Capabilities According to the JTAG Standard
    - Extensive On-chip Debug Support
  - Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
- Peripheral Features
  - Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
  - One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
  - Real Time Counter with Separate Oscillator
  - Four PWM Channels
  - 8-channel, 10-bit ADC
  - Programmable Serial USART
  - Master/Slave SPI Serial Interface
  - Universal Serial Interface with Start Condition Detector
  - Programmable Watchdog Timer with Separate On-chip Oscillator
  - On-chip Analog Comparator
  - Interrupt and Wake-up on Pin Change
- Special Microcontroller Features
  - Power-on Reset and Programmable Brown-out Detection
  - Internal Calibrated Oscillator
  - External and Internal Interrupt Sources
  - Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and Standby
- I/O and Packages
  - 54 Programmable I/O Lines
  - 64-lead TQFP and 64-pad QFN/MLF
- Speed Grade:
  - ATmega165PV: 0 4 MHz @ 1.8V 5.5V, 0 8 MHz @ 2.7V 5.5V
  - ATmega165P: 0 8 MHz @ 2.7V 5.5V, 0 16 MHz @ 4.5V 5.5V
- Temperature range:
- 40°C to 85°C Industrial
- Ultra-Low Power Consumption
  - Active Mode:
    - 1 MHz, 1.8V: 330 µA
    - 32 kHz, 1.8V: 10 µA (including Oscillator)
  - Power-down Mode:
    - \_ 0.1 μA at 1.8V
  - Power-save Mode:
    - 0.6 μA at 1.8V(Including 32 kHz RTC)
- Notes: 1. Worst case temperature. Guaranteed after last write cycle.
  - 2. Failure rate less than 1 ppm.
  - 3. Characterized through accelerated tests.





8-bit **AVR**<sup>®</sup> Microcontroller with 16K Bytes In-System Programmable Flash


# ATmega165P ATmega165PV

# Preliminary

Summary

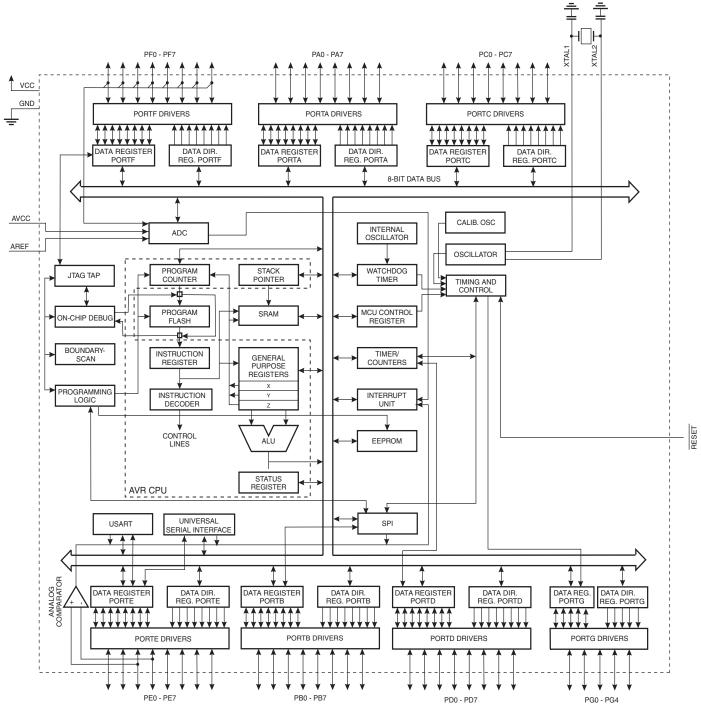


# 1. Pin Configurations



1.1 Disclaimer

Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized.


# <sup>2</sup> ATmega165P

## 2. Overview

The ATmega165P is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega165P achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

## 2.1 Block Diagram









The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega165P provides the following features: 16 Kbytes of In-System Programmable Flash with Read-While-Write capabilities, 512 bytes EEPROM, 1 Kbyte SRAM, 53 general purpose I/O lines, 32 general purpose working registers, a JTAG interface for Boundary-scan, On-chip Debugging support and programming, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, Universal Serial Interface with Start Condition Detector, an 8-channel, 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, an SPI serial port, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low-power consumption.

The device is manufactured using Atmel's high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega165P is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.

The ATmega165P AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.

## 2.2 Pin Descriptions

2.2.1 VCC

Digital supply voltage.

2.2.2 GND

Ground.

## 2.2.3 Port A (PA7..PA0)

Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running.

## 2.2.4 Port B (PB7:PB0)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port B has better driving capabilities than the other ports.

Port B also serves the functions of various special features of the ATmega165P as listed on "Alternate Functions of Port B" on page 69.

## 2.2.5 Port C (PC7:PC0)

Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.

## 2.2.6 Port D (PD7:PD0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the ATmega165P as listed on "Alternate Functions of Port D" on page 72.

## 2.2.7 Port E (PE7:PE0)

Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port E output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up





resistors are activated. The Port E pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port E also serves the functions of various special features of the ATmega165P as listed in Chapter "Alternate Functions of Port E" on page 73.

### 2.2.8 Port F (PF7:PF0)

Port F serves as the analog inputs to the A/D Converter.

Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins can provide internal pull-up resistors (selected for each bit). The Port F output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port F pins that are externally pulled low will source current if the pull-up resistors are activated. The Port F pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even if a reset occurs.

Port F also serves the functions of the JTAG interface, see "Alternate Functions of Port F" on page 75.

### 2.2.9 Port G (PG5:PG0)

Port G is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port G output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up resistors are activated. The Port G pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port G also serves the functions of various special features of the ATmega165P as listed in Chapter "Alternate Functions of Port G" on page 77.

### 2.2.10 RESET

XTAL1

XTAL2

2.2.11

2.2.12

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 26-4 on page 302. Shorter pulses are not guaranteed to generate a reset.

| Input to the inverting  |                 | السيميمية المصبح بالمالي | بلمملم لمصيمة مراحما | an availan airauit |
|-------------------------|-----------------|--------------------------|----------------------|--------------------|
| Indui to me invenino    | 1 Oscillator am | omer and mour            | по пле плеглаї сіоск | operating circuit  |
| input to the involution | g ocomator ann  | philler and input        |                      | oporating on out   |

Output from the inverting Oscillator amplifier.

2.2.13 AVCC

AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally connected to  $V_{CC}$ , even if the ADC is not used. If the ADC is used, it should be connected to  $V_{CC}$  through a low-pass filter.

2.2.14 AREF

This is the analog reference pin for the A/D Converter.

## 3. Resources

A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr.





# 4. Register Summary

| Address          | Name                 | Bit 7  | Bit 6  | Bit 5    | Bit 4       | Bit 3            | Bit 2         | Bit 1              | Bit 0  | Page |
|------------------|----------------------|--------|--------|----------|-------------|------------------|---------------|--------------------|--------|------|
| (0xFF)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xFE)           | Reserved             | _      | _      | -        | -           | _                | _             | _                  | _      |      |
| (0xFD)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xFC)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xFB)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xFA)           | Reserved             | -      | _      | _        | -           | -                | -             | -                  | -      |      |
| (0xF9)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xF8)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xF7)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xF6)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xF5)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xF4)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xF3)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xF2)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xF1)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xF0)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xEF)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xEE)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xED)           | Reserved             | -      | -      | -        | -           | -                | -             | _                  | -      |      |
| (0xEC)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xEB)           | Reserved             | -      | -      | -        |             | -                | -             | _                  | -      |      |
| (0xEA)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xE9)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xE8)           | Reserved             | -      | -      | -        |             | -                | -             | _                  | -      |      |
| (0xE7)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xE6)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xE5)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xE4)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xE3)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xE2)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xE1)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xE0)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xDF)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xDE)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xDD)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xDC)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xDB)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xDA)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xD9)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xD8)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xD7)           | Reserved             | -      | -      | -        | -           | -                | -             | -                  | -      |      |
| (0xD6)           | Reserved             | -      | -      |          | -           | -                | -             | -                  | -      |      |
| (0xD5)           | Reserved             |        |        |          |             |                  |               |                    |        |      |
| (0xD4)           | Reserved<br>Reserved | -      | -      | -        |             | -                | -             | -                  | -      |      |
| (0xD3)<br>(0xD2) | Reserved             |        |        |          |             |                  |               |                    |        |      |
| (0xD2)<br>(0xD1) | Reserved             | -      | -      |          | -           |                  | -             | -                  | -      |      |
| (0xD1)<br>(0xD0) | Reserved             | _      | _      | _        | -           | _                | _             | _                  |        |      |
| (0xD0)<br>(0xCF) | Reserved             | _      |        | _        | _           | _                | _             |                    |        |      |
| (0xCE)           | Reserved             | _      | _      | _        | -           | _                | _             |                    | _      |      |
| (0xCD)           | Reserved             | _      | -      | -        | -           | -                | _             | _                  | _      | 1    |
| (0xCC)           | Reserved             |        | _      | _        | † _         | -                |               |                    | _      | 1    |
| (0xCC)<br>(0xCB) | Reserved             | _      | _      | _        | -           | _                | _             |                    | _      |      |
| (0xCA)           | Reserved             | _      | _      | _        | _           | _                | _             | _                  | _      |      |
| (0xC9)           | Reserved             | _      | _      | _        | _           | _                | _             | _                  | _      | 1    |
| (0xC8)           | Reserved             | -      | _      | -        | _           | -                | -             | _                  | _      |      |
| (0xC7)           | Reserved             | _      | _      | _        | _           | _                | -             | _                  | _      |      |
| (0xC6)           | UDR0                 |        | •      | •        |             | Data Register    | •             |                    |        | 183  |
| (0xC5)           | UBRR0H               |        |        |          |             |                  | USART0 Baud F | Rate Register Higl | า      | 187  |
| (0xC4)           | UBRROL               |        |        |          | USART0 Baud | Rate Register Lo |               |                    |        | 187  |
| (0xC3)           | Reserved             | _      | _      | _        | -           | -                | _             | _                  | _      |      |
| (0xC2)           | UCSR0C               | -      | UMSEL0 | UPM01    | UPM00       | USBS0            | UCSZ01        | UCSZ00             | UCPOL0 | 183  |
| (0xC1)           | UCSR0B               | RXCIE0 | TXCIE0 | UDRIE0   | RXEN0       | TXEN0            | UCSZ02        | RXB80              | TXB80  | 183  |
| (0xC0)           | UCSR0A               | RXC0   | TXC0   | UDRE0    | FE0         | DOR0             | UPE0          | U2X0               | MPCM0  | 183  |
| (0.00)           | 000110/1             |        |        | 0 DITIED |             | 2.0110           | 0. 20         | 02/10              | 51110  |      |

# ATmega165P

| Address          | Name                 | Bit 7          | Bit 6          | Bit 5    | Bit 4             | Bit 3              | Bit 2      | Bit 1     | Bit 0     | Page       |
|------------------|----------------------|----------------|----------------|----------|-------------------|--------------------|------------|-----------|-----------|------------|
| (0xBF)           | Reserved             | _              | _              | _        | _                 | _                  | _          | _         | -         |            |
| (0xBE)           | Reserved             | _              | _              | _        | _                 | _                  | _          | _         | _         |            |
| (0xBD)           | Reserved             | -              | -              | -        | -                 | -                  | -          | -         | -         |            |
| (0xBC)           | Reserved             | _              | -              | _        | -                 | _                  | -          | _         | -         |            |
| (0xBB)           | Reserved             | -              | -              | -        | -                 | -                  | -          | -         | -         |            |
| (0xBA)           | USIDR                |                |                | T        | USI Da            | ta Register        |            | T         | 1         | 196        |
| (0xB9)           | USISR                | USISIF         | USIOIF         | USIPF    | USIDC             | USICNT3            | USICNT2    | USICNT1   | USICNT0   | 196        |
| (0xB8)           | USICR                | USISIE         | USIOIE         | USIWM1   | USIWM0            | USICS1             | USICS0     | USICLK    | USITC     | 197        |
| (0xB7)           | Reserved             | -              |                | -        | -                 | -                  | -          | -         | -         |            |
| (0xB6)           | ASSR                 | -              | -              | -        | EXCLK             | AS2                | TCN2UB     | OCR2UB    | TCR2UB    | 146        |
| (0xB5)<br>(0xB4) | Reserved<br>Reserved | _              | _              | _        | -                 | _                  |            | _         |           |            |
| (0xB3)           | OCR2A                |                | _              |          | ner/Counter2 Out  | put Compare Rec    | ister A    | _         | _         | 145        |
| (0xB2)           | TCNT2                |                |                |          |                   | unter2 (8-bit)     |            |           |           | 145        |
| (0xB1)           | Reserved             | -              | -              | -        | -                 | -                  | -          | -         | -         |            |
| (0xB0)           | TCCR2A               | FOC2A          | WGM20          | COM2A1   | COM2A0            | WGM21              | CS22       | CS21      | CS20      | 143        |
| (0xAF)           | Reserved             | -              | -              | -        | -                 | -                  | -          | -         | -         |            |
| (0xAE)           | Reserved             | -              | -              | -        | -                 | -                  | -          | -         | -         |            |
| (0xAD)           | Reserved             | -              | -              | -        | -                 | -                  | -          | -         | -         |            |
| (0xAC)           | Reserved             | -              | -              | -        | -                 | -                  | -          | -         | -         |            |
| (0xAB)           | Reserved             | -              | -              | -        | -                 | -                  | -          | -         | -         |            |
| (0xAA)           | Reserved             | -              | -              | -        | -                 | -                  | -          | -         | -         |            |
| (0xA9)           | Reserved             | -              | -              | -        |                   | -                  | -          | -         | -         | <u> </u>   |
| (0xA8)<br>(0xA7) | Reserved<br>Reserved | _              | _              | _        | -                 |                    | _          | _         | -         |            |
| (0xA6)           | Reserved             | _              | _              | _        | _                 | _                  | _          | _         | _         |            |
| (0xA5)           | Reserved             | _              | _              | _        | _                 | _                  | -          | _         | _         |            |
| (0xA4)           | Reserved             | -              | -              | -        | -                 | -                  | -          | -         | -         |            |
| (0xA3)           | Reserved             | -              | -              | -        | -                 | -                  | -          | -         | -         |            |
| (0xA2)           | Reserved             | _              | -              | _        | -                 | -                  | -          | -         | -         |            |
| (0xA1)           | Reserved             | -              | -              | -        | -                 | -                  | -          | -         | -         |            |
| (0xA0)           | Reserved             | -              | -              | -        | -                 | -                  | -          | -         | -         |            |
| (0x9F)           | Reserved             | -              | -              | -        | -                 | -                  | -          | -         | -         |            |
| (0x9E)           | Reserved             | -              | -              | -        | -                 | -                  | -          | -         | -         |            |
| (0x9D)           | Reserved             | -              | -              | -        | -                 | -                  | -          | -         | -         |            |
| (0x9C)<br>(0x9B) | Reserved<br>Reserved | _              | -              | -        | -                 |                    |            | _         |           |            |
| (0x9A)           | Reserved             |                |                |          |                   |                    | _          |           |           |            |
| (0x99)           | Reserved             | _              | _              | _        | _                 | _                  | _          | _         | _         |            |
| (0x98)           | Reserved             | -              | -              | -        | -                 | -                  | -          | -         | -         |            |
| (0x97)           | Reserved             | -              | -              | -        | -                 | -                  | -          | -         | -         |            |
| (0x96)           | Reserved             | _              | -              | _        | -                 | -                  | -          | -         | -         |            |
| (0x95)           | Reserved             | -              | -              | -        | -                 | -                  | -          | -         | -         |            |
| (0x94)           | Reserved             | -              | -              | -        | -                 | -                  | -          | -         | -         |            |
| (0x93)           | Reserved             | -              | -              | -        | -                 | -                  | -          | -         | -         |            |
| (0x92)           | Reserved             | -              | -              | -        | -                 | -                  | -          | -         | -         |            |
| (0x91)           | Reserved             | -              | -              | -        | -                 | -                  | -          | -         | -         |            |
| (0x90)           | Reserved             | -              | -              | -        | -                 | -                  | -          | -         | -         | <u> </u>   |
| (0x8F)<br>(0x8E) | Reserved<br>Reserved | -              |                | -        |                   |                    | _          |           |           |            |
| (0x8E)<br>(0x8D) | Reserved             | _              | _              |          | _                 | _                  | _          |           | _         |            |
| (0x8C)           | Reserved             | _              | _              | _        | _                 | -                  | _          | _         | _         |            |
| (0x8B)           | OCR1BH               |                |                |          |                   | Compare Register   |            |           |           | 123        |
| (0x8A)           | OCR1BL               |                |                |          |                   | Compare Register   | * *        |           |           | 123        |
| (0x89)           | OCR1AH               |                |                |          |                   | ompare Register    |            |           |           | 123        |
| (0x88)           | OCR1AL               |                |                | Timer/Co | unter1 - Output C | Compare Register   | A Low Byte |           |           | 123        |
| (0x87)           | ICR1H                |                |                |          |                   | Capture Register   |            |           |           | 124        |
| (0x86)           | ICR1L                |                |                |          |                   | Capture Register   |            |           |           | 124        |
| (0x85)           | TCNT1H               |                |                |          |                   | unter Register Hig |            |           |           | 123        |
| (0x84)           | TCNT1L               |                |                |          |                   | unter Register Lo  |            |           |           | 123        |
| (0x83)           | Reserved             | -              | -              | -        | -                 | -                  | -          | -         | -         | 100        |
| (0x82)           | TCCR1C<br>TCCR1B     | FOC1A<br>ICNC1 | FOC1B<br>ICES1 | -        | –<br>WGM13        | -<br>WGM12         | -          | -<br>CS11 | -<br>CS10 | 122<br>121 |
| (0x81)           | TCCR1B<br>TCCR1A     | COM1A1         | COM1A0         | COM1B1   | COM1B0            | WGM12<br>_         | CS12<br>-  | WGM11     | WGM10     | 121        |
| (0x80)           |                      |                | <b>USWINO</b>  | 0000101  | 000000            |                    |            |           |           | 110        |
| (0x80)<br>(0x7F) | DIDR1                | _              | -              | _        | -                 | -                  | -          | AIN1D     | AIN0D     | 203        |





### ATmega165P 10

| Address     | Name     | Bit 7    | Bit 6   | Bit 5   | Bit 4          | Bit 3             | Bit 2   | Bit 1    | Bit 0  | Page        |
|-------------|----------|----------|---------|---------|----------------|-------------------|---------|----------|--------|-------------|
| (0x7D)      | Reserved | -        | -       | -       | -              | -                 | -       | -        | -      | -           |
| (0x7C)      | ADMUX    | REFS1    | REFS0   | ADLAR   | MUX4           | MUX3              | MUX2    | MUX1     | MUX0   | 217         |
| (0x7B)      | ADCSRB   | -        | ACME    | -       | -              | -                 | ADTS2   | ADTS1    | ADTS0  | 202, 221    |
| (0x7A)      | ADCSRA   | ADEN     | ADSC    | ADATE   | ADIF           | ADIE              | ADPS2   | ADPS1    | ADPS0  | 219         |
| (0x79)      | ADCH     |          |         |         | ADC Data Re    | gister High byte  |         |          |        | 220         |
| (0x78)      | ADCL     |          |         |         | ADC Data Re    | egister Low byte  |         |          |        | 220         |
| (0x77)      | Reserved | -        | -       | -       | -              | _                 | -       | -        | -      |             |
| (0x76)      | Reserved | -        | -       | -       | -              | -                 | -       | -        | -      |             |
| (0x75)      | Reserved | -        | -       | -       | -              | _                 | -       | -        | -      |             |
| (0x74)      | Reserved | -        | -       | -       | -              | -                 | -       | -        | -      |             |
| (0x73)      | Reserved | _        | _       | -       | _              | -                 | _       | -        | -      |             |
| (0x72)      | Reserved | -        | -       | -       | -              | -                 | -       | -        | -      |             |
| (0x71)      | Reserved | -        | -       | -       | -              | -                 | -       | -        | -      |             |
| (0x70)      | TIMSK2   | -        | -       | -       | -              | -                 | -       | OCIE2A   | TOIE2  | 146         |
| (0x6F)      | TIMSK1   | -        | -       | ICIE1   | -              | -                 | OCIE1B  | OCIE1A   | TOIE1  | 124         |
| (0x6E)      | TIMSK0   | -        | -       | -       | -              | -                 | -       | OCIE0A   | TOIE0  | 96          |
| (0x6D)      | Reserved | -        | -       | -       | -              | -                 | -       | -        | -      |             |
| (0x6C)      | PCMSK1   | PCINT15  | PCINT14 | PCINT13 | PCINT12        | PCINT11           | PCINT10 | PCINT9   | PCINT8 | 59          |
| (0x6B)      | PCMSK0   | PCINT7   | PCINT6  | PCINT5  | PCINT4         | PCINT3            | PCINT2  | PCINT1   | PCINT0 | 60          |
| (0x6A)      | Reserved | -        | -       | -       | -              | -                 | -       | -        | -      |             |
| (0x69)      | EICRA    | -        | -       | -       | -              | -                 | -       | ISC01    | ISC00  | 58          |
| (0x68)      | Reserved | -        | -       | -       | -              | -                 | -       | -        | -      |             |
| (0x67)      | Reserved | -        | -       | -       | -              | -                 | -       | -        | -      |             |
| (0x66)      | OSCCAL   |          |         |         | Oscillator Cal | ibration Register |         |          |        | 34          |
| (0x65)      | Reserved | -        | _       | _       | -              | -                 | -       | -        | -      |             |
| (0x64)      | PRR      | -        | -       | -       | -              | PRTIM1            | PRSPI   | PRUSART0 | PRADC  | 41          |
| (0x63)      | Reserved | _        | _       | -       | -              | -                 | -       | -        | -      |             |
| (0x62)      | Reserved | -        | _       | -       | -              | -                 | -       | -        | -      |             |
| (0x61)      | CLKPR    | CLKPCE   | -       | -       | -              | CLKPS3            | CLKPS2  | CLKPS1   | CLKPS0 | 34          |
| (0x60)      | WDTCR    | -        | -       | -       | WDCE           | WDE               | WDP2    | WDP1     | WDP0   | 50          |
| 0x3F (0x5F) | SREG     | I        | Т       | Н       | S              | V                 | N       | Z        | С      | 14          |
| 0x3E (0x5E) | SPH      | -        | -       | -       | -              | -                 | SP10    | SP9      | SP8    | 10          |
| 0x3D (0x5D) | SPL      | SP7      | SP6     | SP5     | SP4            | SP3               | SP2     | SP1      | SP0    | 10          |
| 0x3C (0x5C) | Reserved |          |         |         |                |                   |         |          |        |             |
| 0x3B (0x5B) | Reserved |          |         |         |                |                   |         |          |        |             |
| 0x3A (0x5A) | Reserved |          |         |         |                |                   |         |          |        |             |
| 0x39 (0x59) | Reserved |          |         |         |                |                   |         |          |        |             |
| 0x38 (0x58) | Reserved |          |         |         |                |                   |         |          |        |             |
| 0x37 (0x57) | SPMCSR   | SPMIE    | RWWSB   | -       | RWWSRE         | BLBSET            | PGWRT   | PGERS    | SPMEN  | 264         |
| 0x36 (0x56) | Reserved | -        | -       | -       | -              | -                 | -       | -        | -      |             |
| 0x35 (0x55) | MCUCR    | JTD      | -       | -       | PUD            | -                 | -       | IVSEL    | IVCE   | 56, 79, 249 |
| 0x34 (0x54) | MCUSR    | -        | -       | -       | JTRF           | WDRF              | BORF    | EXTRF    | PORF   | 249         |
| 0x33 (0x53) | SMCR     | -        | _       | -       | -              | SM2               | SM1     | SM0      | SE     | 41          |
| 0x32 (0x52) | Reserved | -        | -       | -       | -              | -                 | -       | -        | -      |             |
| 0x31 (0x51) | OCDR     | IDRD/OCD | OCDR6   | OCDR5   | OCDR4          | OCDR3             | OCDR2   | OCDR1    | OCDR0  | 228         |
| 0x30 (0x50) | ACSR     | ACD      | ACBG    | ACO     | ACI            | ACIE              | ACIC    | ACIS1    | ACIS0  | 202         |
| 0x2F (0x4F) | Reserved | -        | -       | -       | -              | -                 | -       | -        | -      |             |
| 0x2E (0x4E) | SPDR     | ļ,       |         |         |                | ta Register       |         |          |        | 157         |
| 0x2D (0x4D) | SPSR     | SPIF     | WCOL    | -       | -              | -                 | -       | -        | SPI2X  | 156         |
| 0x2C (0x4C) | SPCR     | SPIE     | SPE     | DORD    | MSTR           | CPOL              | CPHA    | SPR1     | SPR0   | 155         |
| 0x2B (0x4B) | GPIOR2   |          |         |         |                | se I/O Register 2 |         |          |        | 25          |
| 0x2A (0x4A) | GPIOR1   |          |         |         |                | se I/O Register 1 |         |          |        | 25          |
| 0x29 (0x49) | Reserved | -        | -       | -       | -              | -                 | -       | -        | -      |             |
| 0x28 (0x48) | Reserved | -        | -       |         | -              | -                 | -       | -        | -      |             |
| 0x27 (0x47) | OCR0A    |          |         | Tin     |                | out Compare Reg   | ister A |          |        | 95          |
| 0x26 (0x46) | TCNT0    |          |         |         |                | unter0 (8 Bit)    |         |          |        | 95          |
| 0x25 (0x45) | Reserved | -        | -       | -       | -              | -                 | -       | -        | -      |             |
| 0x24 (0x44) | TCCR0A   | FOC0A    | WGM00   | COM0A1  | COM0A0         | WGM01             | CS02    | CS01     | CS00   | 93          |
| 0x23 (0x43) | GTCCR    | TSM      | -       | -       | -              | -                 | -       | PSR2     | PSR10  | 128, 147    |
| 0x22 (0x42) | EEARH    | -        | -       | -       | -              | -                 | -       | -        | EEAR8  | 24          |
| 0x21 (0x41) | EEARL    |          |         |         |                | s Register Low B  | yte     |          |        | 24          |
| 0x20 (0x40) | EEDR     |          |         |         |                | Data Register     |         |          | I      | 24          |
| 0x1F (0x3F) | EECR     | -        | -       | -       | -              | EERIE             | EEMWE   | EEWE     | EERE   | 24          |
| 0x1E (0x3E) | GPIOR0   |          | _       |         | General Purpo  | se I/O Register 0 |         |          |        | 25          |
| 0x1D (0x3D) | EIMSK    | PCIE1    | PCIE0   | -       | -              | -                 | -       | -        | INT0   | 58          |
| 0x1C (0x3C) | EIFR     | PCIF1    | PCIF0   | -       | -              | -                 | -       | _        | INTF0  | 59          |

AMEL

| Address     | Name     | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | Page |
|-------------|----------|--------|--------|--------|--------|--------|--------|--------|--------|------|
| 0x1B (0x3B) | Reserved | -      | -      | -      | -      | -      | -      | -      | -      |      |
| 0x1A (0x3A) | Reserved | -      | -      | -      | -      | -      | -      | -      | -      |      |
| 0x19 (0x39) | Reserved | -      | -      | -      | -      | -      | -      | -      | -      |      |
| 0x18 (0x38) | Reserved | -      | -      | -      | -      | -      | -      | -      | -      |      |
| 0x17 (0x37) | TIFR2    | -      | -      | -      | -      | -      | -      | OCF2A  | TOV2   | 146  |
| 0x16 (0x36) | TIFR1    | -      | -      | ICF1   | -      | -      | OCF1B  | OCF1A  | TOV1   | 125  |
| 0x15 (0x35) | TIFR0    | -      | -      | -      | -      | -      | -      | OCF0A  | TOV0   | 96   |
| 0x14 (0x34) | PORTG    | -      | -      | PORTG5 | PORTG4 | PORTG3 | PORTG2 | PORTG1 | PORTG0 | 81   |
| 0x13 (0x33) | DDRG     | -      | -      | DDG5   | DDG4   | DDG3   | DDG2   | DDG1   | DDG0   | 81   |
| 0x12 (0x32) | PING     | -      | -      | PING5  | PING4  | PING3  | PING2  | PING1  | PING0  | 81   |
| 0x11 (0x31) | PORTF    | PORTF7 | PORTF6 | PORTF5 | PORTF4 | PORTF3 | PORTF2 | PORTF1 | PORTF0 | 81   |
| 0x10 (0x30) | DDRF     | DDF7   | DDF6   | DDF5   | DDF4   | DDF3   | DDF2   | DDF1   | DDF0   | 81   |
| 0x0F (0x2F) | PINF     | PINF7  | PINF6  | PINF5  | PINF4  | PINF3  | PINF2  | PINF1  | PINF0  | 81   |
| 0x0E (0x2E) | PORTE    | PORTE7 | PORTE6 | PORTE5 | PORTE4 | PORTE3 | PORTE2 | PORTE1 | PORTE0 | 80   |
| 0x0D (0x2D) | DDRE     | DDE7   | DDE6   | DDE5   | DDE4   | DDE3   | DDE2   | DDE1   | DDE0   | 80   |
| 0x0C (0x2C) | PINE     | PINE7  | PINE6  | PINE5  | PINE4  | PINE3  | PINE2  | PINE1  | PINE0  | 81   |
| 0x0B (0x2B) | PORTD    | PORTD7 | PORTD6 | PORTD5 | PORTD4 | PORTD3 | PORTD2 | PORTD1 | PORTD0 | 80   |
| 0x0A (0x2A) | DDRD     | DDD7   | DDD6   | DDD5   | DDD4   | DDD3   | DDD2   | DDD1   | DDD0   | 80   |
| 0x09 (0x29) | PIND     | PIND7  | PIND6  | PIND5  | PIND4  | PIND3  | PIND2  | PIND1  | PIND0  | 80   |
| 0x08 (0x28) | PORTC    | PORTC7 | PORTC6 | PORTC5 | PORTC4 | PORTC3 | PORTC2 | PORTC1 | PORTC0 | 80   |
| 0x07 (0x27) | DDRC     | DDC7   | DDC6   | DDC5   | DDC4   | DDC3   | DDC2   | DDC1   | DDC0   | 80   |
| 0x06 (0x26) | PINC     | PINC7  | PINC6  | PINC5  | PINC4  | PINC3  | PINC2  | PINC1  | PINC0  | 80   |
| 0x05 (0x25) | PORTB    | PORTB7 | PORTB6 | PORTB5 | PORTB4 | PORTB3 | PORTB2 | PORTB1 | PORTB0 | 79   |
| 0x04 (0x24) | DDRB     | DDB7   | DDB6   | DDB5   | DDB4   | DDB3   | DDB2   | DDB1   | DDB0   | 79   |
| 0x03 (0x23) | PINB     | PINB7  | PINB6  | PINB5  | PINB4  | PINB3  | PINB2  | PINB1  | PINB0  | 79   |
| 0x02 (0x22) | PORTA    | PORTA7 | PORTA6 | PORTA5 | PORTA4 | PORTA3 | PORTA2 | PORTA1 | PORTA0 | 79   |
| 0x01 (0x21) | DDRA     | DDA7   | DDA6   | DDA5   | DDA4   | DDA3   | DDA2   | DDA1   | DDA0   | 79   |
| 0x00 (0x20) | PINA     | PINA7  | PINA6  | PINA5  | PINA4  | PINA3  | PINA2  | PINA1  | PINA0  | 79   |

Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

- Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.
- 4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 0x3F must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega165P is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.





# 5. Instruction Set Summary

| Mnemonics                                                                    | Operands                                            | Description                                                                                                                                                                                                                                                                                                | Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flags                                                                                                                                                                     | #Clocks                                                                                                                                                                                                               |
|------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ARITHMETIC AND                                                               | LOGIC INSTRUCTIONS                                  | · · ·                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , j                                                                                                                                                                       |                                                                                                                                                                                                                       |
| ADD                                                                          | Rd, Rr                                              | Add two Registers                                                                                                                                                                                                                                                                                          | $Rd \leftarrow Rd + Rr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Z,C,N,V,H                                                                                                                                                                 | 1                                                                                                                                                                                                                     |
| ADC                                                                          | Rd, Rr                                              | Add with Carry two Registers                                                                                                                                                                                                                                                                               | $Rd \leftarrow Rd + Rr + C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Z,C,N,V,H                                                                                                                                                                 | 1                                                                                                                                                                                                                     |
| ADIW                                                                         | Rdl,K                                               | Add Immediate to Word                                                                                                                                                                                                                                                                                      | Rdh:Rdl ← Rdh:Rdl + K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Z,C,N,V,S                                                                                                                                                                 | 2                                                                                                                                                                                                                     |
| SUB                                                                          | Rd, Rr                                              | Subtract two Registers                                                                                                                                                                                                                                                                                     | $Rd \leftarrow Rd - Rr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Z,C,N,V,H                                                                                                                                                                 | 1                                                                                                                                                                                                                     |
| SUBI                                                                         | Rd, K                                               | Subtract Constant from Register                                                                                                                                                                                                                                                                            | Rd ← Rd - K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Z,C,N,V,H                                                                                                                                                                 | 1                                                                                                                                                                                                                     |
| SBC                                                                          | Rd, Rr                                              | Subtract with Carry two Registers                                                                                                                                                                                                                                                                          | $Rd \leftarrow Rd - Rr - C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Z,C,N,V,H                                                                                                                                                                 | 1                                                                                                                                                                                                                     |
| SBCI                                                                         | Rd, K                                               | Subtract with Carry Constant from Reg.                                                                                                                                                                                                                                                                     | $Rd \leftarrow Rd - K - C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Z,C,N,V,H                                                                                                                                                                 | 1                                                                                                                                                                                                                     |
| SBIW                                                                         | Rdl,K                                               | Subtract Immediate from Word                                                                                                                                                                                                                                                                               | Rdh:RdI ← Rdh:RdI - K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Z,C,N,V,S                                                                                                                                                                 | 2                                                                                                                                                                                                                     |
| AND                                                                          | Rd, Rr                                              | Logical AND Registers                                                                                                                                                                                                                                                                                      | $Rd \leftarrow Rd \bullet Rr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Z,N,V                                                                                                                                                                     | 1                                                                                                                                                                                                                     |
| ANDI                                                                         | Rd, K                                               | Logical AND Register and Constant                                                                                                                                                                                                                                                                          | $Rd \leftarrow Rd \bullet K$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Z,N,V                                                                                                                                                                     | 1                                                                                                                                                                                                                     |
| OR                                                                           | Rd, Rr                                              | Logical OR Registers                                                                                                                                                                                                                                                                                       | Rd ← Rd v Rr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Z,N,V                                                                                                                                                                     | 1                                                                                                                                                                                                                     |
| ORI                                                                          | Rd, K                                               | Logical OR Register and Constant                                                                                                                                                                                                                                                                           | $Rd \leftarrow Rd v K$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Z,N,V                                                                                                                                                                     | 1                                                                                                                                                                                                                     |
| EOR                                                                          | Rd, Rr                                              | Exclusive OR Registers                                                                                                                                                                                                                                                                                     | $Rd \leftarrow Rd \oplus Rr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Z,N,V                                                                                                                                                                     | 1                                                                                                                                                                                                                     |
| COM                                                                          | Rd                                                  | One's Complement                                                                                                                                                                                                                                                                                           | Rd ← 0xFF – Rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Z,C,N,V                                                                                                                                                                   | 1                                                                                                                                                                                                                     |
| NEG                                                                          | Rd                                                  | Two's Complement                                                                                                                                                                                                                                                                                           | Rd ← 0x00 – Rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Z,C,N,V,H                                                                                                                                                                 | 1                                                                                                                                                                                                                     |
| SBR                                                                          | Rd,K                                                | Set Bit(s) in Register                                                                                                                                                                                                                                                                                     | $Rd \leftarrow Rd \vee K$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z,N,V                                                                                                                                                                     | 1                                                                                                                                                                                                                     |
| CBR                                                                          | Rd,K                                                | Clear Bit(s) in Register                                                                                                                                                                                                                                                                                   | $Rd \leftarrow Rd \bullet (0xFF - K)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Z,N,V                                                                                                                                                                     | 1                                                                                                                                                                                                                     |
| INC                                                                          | Rd                                                  | Increment                                                                                                                                                                                                                                                                                                  | $Rd \leftarrow Rd + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Z,N,V                                                                                                                                                                     | 1                                                                                                                                                                                                                     |
| DEC                                                                          | Rd                                                  | Decrement                                                                                                                                                                                                                                                                                                  | $Rd \leftarrow Rd - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Z,N,V                                                                                                                                                                     | 1                                                                                                                                                                                                                     |
| TST                                                                          | Rd                                                  | Test for Zero or Minus                                                                                                                                                                                                                                                                                     | $Rd \leftarrow Rd \bullet Rd$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Z,N,V                                                                                                                                                                     | 1                                                                                                                                                                                                                     |
| CLR                                                                          | Rd                                                  | Clear Register                                                                                                                                                                                                                                                                                             | $Rd \leftarrow Rd \oplus Rd$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Z,N,V                                                                                                                                                                     | 1                                                                                                                                                                                                                     |
| SER                                                                          | Rd                                                  | Set Register                                                                                                                                                                                                                                                                                               | Rd ← 0xFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | None                                                                                                                                                                      | 1                                                                                                                                                                                                                     |
| MUL                                                                          | Rd, Rr                                              | Multiply Unsigned                                                                                                                                                                                                                                                                                          | $R1:R0 \leftarrow Rd x Rr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Z,C                                                                                                                                                                       | 2                                                                                                                                                                                                                     |
| MULS                                                                         | Rd, Rr                                              | Multiply Signed                                                                                                                                                                                                                                                                                            | $R1:R0 \leftarrow Rd \times Rr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Z,C                                                                                                                                                                       | 2                                                                                                                                                                                                                     |
| MULSU                                                                        | Rd, Rr                                              | Multiply Signed with Unsigned                                                                                                                                                                                                                                                                              | $R1:R0 \leftarrow Rd x Rr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Z,C                                                                                                                                                                       | 2                                                                                                                                                                                                                     |
| FMUL                                                                         | Rd, Rr                                              | Fractional Multiply Unsigned                                                                                                                                                                                                                                                                               | $R1:R0 \leftarrow (Rd x Rr) << 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Z,C                                                                                                                                                                       | 2                                                                                                                                                                                                                     |
| FMULS                                                                        | Rd, Rr                                              | Fractional Multiply Signed                                                                                                                                                                                                                                                                                 | $R1:R0 \leftarrow (Rd x Rr) << 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Z,C                                                                                                                                                                       | 2                                                                                                                                                                                                                     |
| FMULSU                                                                       | Rd, Rr                                              | Fractional Multiply Signed with Unsigned                                                                                                                                                                                                                                                                   | $R1:R0 \leftarrow (Rd x Rr) << 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Z,C                                                                                                                                                                       | 2                                                                                                                                                                                                                     |
| BRANCH INSTRUC                                                               |                                                     | Haddona malaply olghod wat onlighed                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,0                                                                                                                                                                       | L                                                                                                                                                                                                                     |
| RJMP                                                                         | k                                                   | Relative Jump                                                                                                                                                                                                                                                                                              | $PC \leftarrow PC + k + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | None                                                                                                                                                                      | 2                                                                                                                                                                                                                     |
| IJMP                                                                         | ĸ                                                   | Indirect Jump to (Z)                                                                                                                                                                                                                                                                                       | $PC \leftarrow Z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | None                                                                                                                                                                      | 2                                                                                                                                                                                                                     |
| JMP                                                                          | k                                                   | Direct Jump                                                                                                                                                                                                                                                                                                | $PC \leftarrow k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | None                                                                                                                                                                      | 3                                                                                                                                                                                                                     |
| RCALL                                                                        | k                                                   | Relative Subroutine Call                                                                                                                                                                                                                                                                                   | $PC \leftarrow PC + k + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | None                                                                                                                                                                      | 3                                                                                                                                                                                                                     |
| ICALL                                                                        | K                                                   | Indirect Call to (Z)                                                                                                                                                                                                                                                                                       | $PC \leftarrow Z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | None                                                                                                                                                                      | 3                                                                                                                                                                                                                     |
| CALL                                                                         | k                                                   | Direct Subroutine Call                                                                                                                                                                                                                                                                                     | $PC \leftarrow k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | None                                                                                                                                                                      | 4                                                                                                                                                                                                                     |
| RET                                                                          | K                                                   | Subroutine Return                                                                                                                                                                                                                                                                                          | PC ← STACK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | None                                                                                                                                                                      | 4                                                                                                                                                                                                                     |
| RETI                                                                         |                                                     | Interrupt Return                                                                                                                                                                                                                                                                                           | PC ← STACK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I                                                                                                                                                                         | 4                                                                                                                                                                                                                     |
| CPSE                                                                         | Rd,Rr                                               | Compare, Skip if Equal                                                                                                                                                                                                                                                                                     | if $(Rd = Rr) PC \leftarrow PC + 2 \text{ or } 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | None                                                                                                                                                                      | 1/2/3                                                                                                                                                                                                                 |
| CP                                                                           | Rd,Rr                                               | Compare                                                                                                                                                                                                                                                                                                    | Rd – Rr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Z, N,V,C,H                                                                                                                                                                | 1                                                                                                                                                                                                                     |
| CPC                                                                          | Rd,Rr                                               | Compare with Carry                                                                                                                                                                                                                                                                                         | Rd – Rr – C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Z, N,V,C,H                                                                                                                                                                | 1                                                                                                                                                                                                                     |
| CPI                                                                          | Rd,K                                                | Compare Register with Immediate                                                                                                                                                                                                                                                                            | Rd – K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Z, N,V,C,H                                                                                                                                                                | 1                                                                                                                                                                                                                     |
| SBRC                                                                         | Rr, b                                               | Skip if Bit in Register Cleared                                                                                                                                                                                                                                                                            | if $(\text{Rr}(b)=0) \text{ PC} \leftarrow \text{PC} + 2 \text{ or } 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | None                                                                                                                                                                      | 1/2/3                                                                                                                                                                                                                 |
| SBRS                                                                         | Rr, b                                               | Skip if Bit in Register is Set                                                                                                                                                                                                                                                                             | if $(\text{Rr}(b)=0)$ PC $\leftarrow$ PC + 2 or 3<br>if $(\text{Rr}(b)=1)$ PC $\leftarrow$ PC + 2 or 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | None                                                                                                                                                                      | 1/2/3                                                                                                                                                                                                                 |
| SBIC                                                                         | P, b                                                | Skip if Bit in I/O Register Cleared                                                                                                                                                                                                                                                                        | if $(P(b)=0) PC \leftarrow PC + 2 \text{ or } 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | None                                                                                                                                                                      | 1/2/3                                                                                                                                                                                                                 |
| SBIS                                                                         | P, b                                                | Skip if Bit in I/O Register Cleared                                                                                                                                                                                                                                                                        | if $(P(b)=0) PC \leftarrow PC + 2 \text{ or } 3$<br>if $(P(b)=1) PC \leftarrow PC + 2 \text{ or } 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | None                                                                                                                                                                      | 1/2/3                                                                                                                                                                                                                 |
| BRBS                                                                         |                                                     | Branch if Status Flag Set                                                                                                                                                                                                                                                                                  | if (SREG(s) = 1) then PC $\leftarrow$ PC + 2 or 3<br>if (SREG(s) = 1) then PC $\leftarrow$ PC+k + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | None                                                                                                                                                                      | 1/2/3                                                                                                                                                                                                                 |
| BRBC                                                                         | s, k                                                | Branch if Status Flag Cleared                                                                                                                                                                                                                                                                              | if (SREG(s) = 0) then PC $\leftarrow$ PC+k + 1<br>if (SREG(s) = 0) then PC $\leftarrow$ PC+k + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | None                                                                                                                                                                      | 1/2                                                                                                                                                                                                                   |
| BREQ                                                                         | s, k<br>k                                           | Branch if Status Flag Cleared<br>Branch if Equal                                                                                                                                                                                                                                                           | if $(SREG(s) = 0)$ then $PC \leftarrow PC + k + 1$<br>if $(Z = 1)$ then $PC \leftarrow PC + k + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | None                                                                                                                                                                      | 1/2                                                                                                                                                                                                                   |
| BRNE                                                                         |                                                     |                                                                                                                                                                                                                                                                                                            | if (Z = 0) then PC $\leftarrow$ PC + k + 1<br>if (Z = 0) then PC $\leftarrow$ PC + k + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | None                                                                                                                                                                      | 1/2                                                                                                                                                                                                                   |
| DRINE                                                                        |                                                     |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NULLE                                                                                                                                                                     | 1/2                                                                                                                                                                                                                   |
| BBCS                                                                         | k<br>k                                              | Branch if Not Equal                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nore                                                                                                                                                                      | 1/0                                                                                                                                                                                                                   |
| BRCS                                                                         | k                                                   | Branch if Carry Set                                                                                                                                                                                                                                                                                        | if (C = 1) then PC $\leftarrow$ PC + k + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | None                                                                                                                                                                      | 1/2                                                                                                                                                                                                                   |
| BRCC                                                                         | k<br>k                                              | Branch if Carry Set<br>Branch if Carry Cleared                                                                                                                                                                                                                                                             | if (C = 1) then PC $\leftarrow$ PC + k + 1<br>if (C = 0) then PC $\leftarrow$ PC + k + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | None                                                                                                                                                                      | 1/2                                                                                                                                                                                                                   |
| BRCC<br>BRSH                                                                 | k<br>k<br>k                                         | Branch if Carry Set<br>Branch if Carry Cleared<br>Branch if Same or Higher                                                                                                                                                                                                                                 | $\begin{array}{l} \mbox{if } (C=1) \mbox{ then } PC \leftarrow PC + k + 1 \\ \mbox{if } (C=0) \mbox{ then } PC \leftarrow PC + k + 1 \\ \mbox{if } (C=0) \mbox{ then } PC \leftarrow PC + k + 1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | None<br>None                                                                                                                                                              | 1/2<br>1/2                                                                                                                                                                                                            |
| BRCC<br>BRSH<br>BRLO                                                         | k<br>k<br>k<br>k                                    | Branch if Carry Set<br>Branch if Carry Cleared<br>Branch if Same or Higher<br>Branch if Lower                                                                                                                                                                                                              | $ \begin{array}{l} \text{if } (C=1) \text{ then } PC \leftarrow PC+k+1 \\ \text{if } (C=0) \text{ then } PC \leftarrow PC+k+1 \\ \text{if } (C=0) \text{ then } PC \leftarrow PC+k+1 \\ \text{if } (C=1) \text{ then } PC \leftarrow PC+k+1 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | None<br>None<br>None                                                                                                                                                      | 1/2<br>1/2<br>1/2                                                                                                                                                                                                     |
| BRCC<br>BRSH<br>BRLO<br>BRMI                                                 | k<br>k<br>k<br>k<br>k                               | Branch if Carry Set<br>Branch if Carry Cleared<br>Branch if Same or Higher<br>Branch if Lower<br>Branch if Minus                                                                                                                                                                                           | $\begin{array}{l} \text{if } (C=1) \text{ then } PC \leftarrow PC+k+1 \\ \text{if } (C=0) \text{ then } PC \leftarrow PC+k+1 \\ \text{if } (C=0) \text{ then } PC \leftarrow PC+k+1 \\ \text{if } (C=1) \text{ then } PC \leftarrow PC+k+1 \\ \text{if } (N=1) \text{ then } PC \leftarrow PC+k+1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | None       None       None       None                                                                                                                                     | 1/2<br>1/2<br>1/2<br>1/2                                                                                                                                                                                              |
| BRCC<br>BRSH<br>BRLO<br>BRMI<br>BRPL                                         | k<br>k<br>k<br>k<br>k<br>k                          | Branch if Carry Set<br>Branch if Carry Cleared<br>Branch if Same or Higher<br>Branch if Lower<br>Branch if Minus<br>Branch if Plus                                                                                                                                                                         | $ \begin{array}{l} \text{if } (C=1) \text{ then } PC \leftarrow PC+k+1 \\ \text{if } (C=0) \text{ then } PC \leftarrow PC+k+1 \\ \text{if } (C=0) \text{ then } PC \leftarrow PC+k+1 \\ \text{if } (C=1) \text{ then } PC \leftarrow PC+k+1 \\ \text{if } (N=1) \text{ then } PC \leftarrow PC+k+1 \\ \text{if } (N=0) \text{ then } PC \leftarrow PC+k+1 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                               | None       None       None       None       None                                                                                                                          | 1/2<br>1/2<br>1/2<br>1/2<br>1/2<br>1/2                                                                                                                                                                                |
| BRCC<br>BRSH<br>BRLO<br>BRMI<br>BRPL<br>BRGE                                 | k<br>k<br>k<br>k<br>k<br>k<br>k                     | Branch if Carry Set<br>Branch if Carry Cleared<br>Branch if Same or Higher<br>Branch if Lower<br>Branch if Minus<br>Branch if Plus<br>Branch if Greater or Equal, Signed                                                                                                                                   | $\begin{array}{l} \text{if } (C=1) \text{ then } PC \leftarrow PC+k+1 \\ \text{if } (C=0) \text{ then } PC \leftarrow PC+k+1 \\ \text{if } (C=0) \text{ then } PC \leftarrow PC+k+1 \\ \text{if } (C=1) \text{ then } PC \leftarrow PC+k+1 \\ \text{if } (N=1) \text{ then } PC \leftarrow PC+k+1 \\ \text{if } (N=0) \text{ then } PC \leftarrow PC+k+1 \\ \text{if } (N=0) \text{ then } PC \leftarrow PC+k+1 \\ \text{if } (N\oplus V=0) \text{ then } PC \leftarrow PC+k+1 \end{array}$                                                                                                                                                                                                                                                                                                                                              | None       None       None       None       None       None       None                                                                                                    | 1/2<br>1/2<br>1/2<br>1/2<br>1/2<br>1/2<br>1/2                                                                                                                                                                         |
| BRCC<br>BRSH<br>BRLO<br>BRMI<br>BRPL<br>BRGE<br>BRLT                         | k<br>k<br>k<br>k<br>k<br>k<br>k<br>k                | Branch if Carry Set<br>Branch if Carry Cleared<br>Branch if Same or Higher<br>Branch if Lower<br>Branch if Minus<br>Branch if Plus<br>Branch if Greater or Equal, Signed<br>Branch if Less Than Zero, Signed                                                                                               | $ \begin{array}{l} \text{if} (C = 1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (C = 0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (C = 0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (C = 1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (N = 1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (N = 0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (N \oplus V = 0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (N \oplus V = 0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (N \oplus V = 1) \text{ then } PC \leftarrow PC + k + 1 \\ \end{array} $                                                                                                                                                                                                                  | None       None       None       None       None       None       None       None       None                                                                              | 1/2           1/2           1/2           1/2           1/2           1/2           1/2           1/2           1/2                                                                                                   |
| BRCC<br>BRSH<br>BRLO<br>BRMI<br>BRPL<br>BRGE<br>BRLT<br>BRHS                 | k<br>k<br>k<br>k<br>k<br>k<br>k<br>k                | Branch if Carry Set<br>Branch if Carry Cleared<br>Branch if Same or Higher<br>Branch if Lower<br>Branch if Minus<br>Branch if Plus<br>Branch if Greater or Equal, Signed<br>Branch if Less Than Zero, Signed<br>Branch if Half Carry Flag Set                                                              | $ \begin{array}{l} \text{if} (C=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (C=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (C=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (C=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (N=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (N=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (N \oplus V = 0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (N \oplus V = 0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (N \oplus V = 1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (H=1) \text{ then } PC \leftarrow PC + k + 1 \\ \end{array} $                                                                                                                                                                    | None                                                                   | 1/2           1/2           1/2           1/2           1/2           1/2           1/2           1/2           1/2           1/2           1/2                                                                       |
| BRCC<br>BRSH<br>BRLO<br>BRMI<br>BRPL<br>BRGE<br>BRLT<br>BRHS<br>BRHC         | k<br>k<br>k<br>k<br>k<br>k<br>k<br>k<br>k<br>k      | Branch if Carry Set<br>Branch if Carry Cleared<br>Branch if Same or Higher<br>Branch if Lower<br>Branch if Minus<br>Branch if Plus<br>Branch if Greater or Equal, Signed<br>Branch if Less Than Zero, Signed<br>Branch if Half Carry Flag Set<br>Branch if Half Carry Flag Cleared                         | $ \begin{array}{l} \text{if} (C=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (C=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (C=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (C=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (N=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (N=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (N \oplus V = 0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (N \oplus V = 0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (N \oplus V = 1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (H=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (H=0) \text{ then } PC \leftarrow PC + k + 1 \\ \end{array} $                                                                                                          | None                                             | 1/2           1/2           1/2           1/2           1/2           1/2           1/2           1/2           1/2           1/2           1/2           1/2           1/2                                           |
| BRCC<br>BRSH<br>BRLO<br>BRMI<br>BRPL<br>BRGE<br>BRLT<br>BRHS<br>BRHC<br>BRTS | k<br>k<br>k<br>k<br>k<br>k<br>k<br>k<br>k<br>k<br>k | Branch if Carry Set<br>Branch if Carry Cleared<br>Branch if Same or Higher<br>Branch if Lower<br>Branch if Minus<br>Branch if Plus<br>Branch if Greater or Equal, Signed<br>Branch if Less Than Zero, Signed<br>Branch if Half Carry Flag Set<br>Branch if Half Carry Flag Cleared<br>Branch if T Flag Set | $ \begin{array}{l} \text{if} (C=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (C=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (C=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (C=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (N=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (N=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (N \oplus V = 0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (N \oplus V = 0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (H=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (H=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (H=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (H=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (T=1) \text{ then } PC \leftarrow PC + k + 1 \\ \end{array} $ | None       None | 1/2           1/2           1/2           1/2           1/2           1/2           1/2           1/2           1/2           1/2           1/2           1/2           1/2           1/2           1/2           1/2 |
| BRCC<br>BRSH<br>BRLO<br>BRMI<br>BRPL<br>BRGE<br>BRLT<br>BRHS<br>BRHC         | k<br>k<br>k<br>k<br>k<br>k<br>k<br>k<br>k<br>k      | Branch if Carry Set<br>Branch if Carry Cleared<br>Branch if Same or Higher<br>Branch if Lower<br>Branch if Minus<br>Branch if Plus<br>Branch if Greater or Equal, Signed<br>Branch if Less Than Zero, Signed<br>Branch if Half Carry Flag Set<br>Branch if Half Carry Flag Cleared                         | $ \begin{array}{l} \text{if} (C=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (C=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (C=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (C=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (N=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (N=0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (N \oplus V = 0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (N \oplus V = 0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (N \oplus V = 1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (H=1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if} (H=0) \text{ then } PC \leftarrow PC + k + 1 \\ \end{array} $                                                                                                          | None                                             | 1/2           1/2           1/2           1/2           1/2           1/2           1/2           1/2           1/2           1/2           1/2           1/2           1/2                                           |

# ATmega165P

| Mnemonics        | Operands        | Description                                                     | Operation                                                                       | Flags           | #Clocks |
|------------------|-----------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------|---------|
| BRVC             | k               | Branch if Overflow Flag is Cleared                              | if (V = 0) then PC $\leftarrow$ PC + k + 1                                      | None            | 1/2     |
| BRIE             | k               | Branch if Interrupt Enabled                                     | if (I = 1) then PC $\leftarrow$ PC + k + 1                                      | None            | 1/2     |
| BRID             | k               | Branch if Interrupt Disabled                                    | if ( I = 0) then PC $\leftarrow$ PC + k + 1                                     | None            | 1/2     |
| BIT AND BIT-TEST | INSTRUCTIONS    |                                                                 |                                                                                 |                 | -       |
| SBI              | P,b             | Set Bit in I/O Register                                         | I/O(P,b) ← 1                                                                    | None            | 2       |
| CBI              | P,b             | Clear Bit in I/O Register                                       | I/O(P,b) ← 0                                                                    | None            | 2       |
| LSL              | Rd              | Logical Shift Left                                              | $Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$                                  | Z,C,N,V         | 1       |
| LSR              | Rd              | Logical Shift Right                                             | $Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$                                  | Z,C,N,V         | 1       |
| ROL              | Rd              | Rotate Left Through Carry                                       | $Rd(0) \leftarrow C, Rd(n+1) \leftarrow Rd(n), C \leftarrow Rd(7)$              | Z,C,N,V         | 1       |
| ROR              | Rd<br>Rd        | Rotate Right Through Carry                                      | $Rd(7) \leftarrow C, Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$              | Z,C,N,V         | 1       |
| ASR<br>SWAP      | Rd              | Arithmetic Shift Right<br>Swap Nibbles                          | Rd(n) ← Rd(n+1), n=06<br>Rd(30)←Rd(74),Rd(74)←Rd(30)                            | Z,C,N,V<br>None | 1       |
| BSET             | s               | Flag Set                                                        | SREG(s) $\leftarrow 1$                                                          | SREG(s)         | 1       |
| BCLR             | s               | Flag Clear                                                      | $SREG(s) \leftarrow 0$                                                          | SREG(s)         | 1       |
| BST              | Rr, b           | Bit Store from Register to T                                    | $T \leftarrow Rr(b)$                                                            | T               | 1       |
| BLD              | Rd, b           | Bit load from T to Register                                     | $Rd(b) \leftarrow T$                                                            | None            | 1       |
| SEC              | .,.             | Set Carry                                                       | C ← 1                                                                           | С               | 1       |
| CLC              |                 | Clear Carry                                                     | C ← 0                                                                           | С               | 1       |
| SEN              |                 | Set Negative Flag                                               | N ← 1                                                                           | N               | 1       |
| CLN              |                 | Clear Negative Flag                                             | N ← 0                                                                           | Ν               | 1       |
| SEZ              |                 | Set Zero Flag                                                   | Z ← 1                                                                           | Z               | 1       |
| CLZ              |                 | Clear Zero Flag                                                 | Z ← 0                                                                           | Z               | 1       |
| SEI              |                 | Global Interrupt Enable                                         | ← 1                                                                             | 1               | 1       |
| CLI              |                 | Global Interrupt Disable                                        | 1 ← 0                                                                           | 1               | 1       |
| SES              |                 | Set Signed Test Flag                                            | S ← 1                                                                           | S               | 1       |
| CLS              |                 | Clear Signed Test Flag                                          | S ← 0                                                                           | S               | 1       |
| SEV              |                 | Set Twos Complement Overflow.                                   | V ← 1                                                                           | V               | 1       |
| CLV              |                 | Clear Twos Complement Overflow                                  | V ← 0                                                                           | V               | 1       |
| SET              |                 | Set T in SREG                                                   | T ← 1                                                                           | T               | 1       |
| CLT              |                 | Clear T in SREG                                                 | T ← 0                                                                           | Т               | 1       |
| SEH<br>CLH       |                 | Set Half Carry Flag in SREG                                     | $\begin{array}{c} H \leftarrow 1 \\ H \leftarrow 0 \end{array}$                 | H               | 1       |
| DATA TRANSFER    | NETRUCTIONS     | Clear Half Carry Flag in SREG                                   | H←U                                                                             | Π               | I       |
| MOV              | Rd, Rr          | Move Between Registers                                          | $Rd \leftarrow Rr$                                                              | None            | 1       |
| MOVW             | Rd, Rr          | Copy Register Word                                              | $Rd+1:Rd \leftarrow Rr+1:Rr$                                                    | None            | 1       |
| LDI              | Rd, K           | Load Immediate                                                  | Rd ← K                                                                          | None            | 1       |
| LD               | Rd, X           | Load Indirect                                                   | $Rd \leftarrow (X)$                                                             | None            | 2       |
| LD               | Rd, X+          | Load Indirect and Post-Inc.                                     | $Rd \leftarrow (X), X \leftarrow X + 1$                                         | None            | 2       |
| LD               | Rd, - X         | Load Indirect and Pre-Dec.                                      | $X \leftarrow X - 1, Rd \leftarrow (X)$                                         | None            | 2       |
| LD               | Rd, Y           | Load Indirect                                                   | $Rd \leftarrow (Y)$                                                             | None            | 2       |
| LD               | Rd, Y+          | Load Indirect and Post-Inc.                                     | $Rd \leftarrow (Y), Y \leftarrow Y + 1$                                         | None            | 2       |
| LD               | Rd, - Y         | Load Indirect and Pre-Dec.                                      | $Y \leftarrow Y - 1$ , Rd $\leftarrow (Y)$                                      | None            | 2       |
| LDD              | Rd,Y+q          | Load Indirect with Displacement                                 | $Rd \leftarrow (Y + q)$                                                         | None            | 2       |
| LD               | Rd, Z           | Load Indirect                                                   | $Rd \leftarrow (Z)$                                                             | None            | 2       |
| LD               | Rd, Z+          | Load Indirect and Post-Inc.                                     | $Rd \leftarrow (Z), Z \leftarrow Z+1$                                           | None            | 2       |
| LD               | Rd, -Z          | Load Indirect and Pre-Dec.                                      | $Z \leftarrow Z - 1, Rd \leftarrow (Z)$                                         | None            | 2       |
| LDD              | Rd, Z+q         | Load Indirect with Displacement                                 | $Rd \leftarrow (Z + q)$                                                         | None            | 2       |
| LDS              | Rd, k           | Load Direct from SRAM                                           | Rd ← (k)                                                                        | None            | 2       |
| ST               | X, Rr           | Store Indirect                                                  | $(X) \leftarrow \operatorname{Rr}$                                              | None            | 2       |
| ST               | X+, Rr          | Store Indirect and Post-Inc.                                    | $(X) \leftarrow \operatorname{Rr}, X \leftarrow X + 1$                          | None            | 2       |
| ST               | - X, Rr         | Store Indirect and Pre-Dec.                                     | $X \leftarrow X - 1, (X) \leftarrow Rr$                                         | None            | 2       |
| ST<br>ST         | Y, Rr<br>Y+, Rr | Store Indirect Store Indirect and Post-Inc.                     | $(Y) \leftarrow Rr$ $(Y) \leftarrow Rr, Y \leftarrow Y + 1$                     | None            | 2       |
| ST               | - Y, Rr         | Store Indirect and Pre-Dec.                                     | $(Y) \leftarrow Rr, Y \leftarrow Y + 1$ $Y \leftarrow Y - 1, (Y) \leftarrow Rr$ | None<br>None    | 2       |
| STD              | Y+q,Rr          | Store Indirect and Pre-Dec.<br>Store Indirect with Displacement | $(Y + q) \leftarrow Rr$                                                         | None            | 2       |
| ST               | Z, Rr           | Store Indirect                                                  | $(Z) \leftarrow Rr$                                                             | None            | 2       |
| ST               | Z+, Rr          | Store Indirect and Post-Inc.                                    | $(Z) \leftarrow \operatorname{Rr}, Z \leftarrow Z + 1$                          | None            | 2       |
| ST               | -Z, Rr          | Store Indirect and Pre-Dec.                                     | $Z \leftarrow Z - 1, (Z) \leftarrow Rr$                                         | None            | 2       |
| STD              | Z+q,Rr          | Store Indirect with Displacement                                | $(Z + q) \leftarrow Rr$                                                         | None            | 2       |
| STS              | k, Rr           | Store Direct to SRAM                                            | $(k) \leftarrow Rr$                                                             | None            | 2       |
| LPM              |                 | Load Program Memory                                             | $R0 \leftarrow (Z)$                                                             | None            | 3       |
| LPM              | Rd, Z           | Load Program Memory                                             | $Rd \leftarrow (Z)$                                                             | None            | 3       |
| LPM              | Rd, Z+          | Load Program Memory and Post-Inc                                | $Rd \leftarrow (Z), Z \leftarrow Z+1$                                           | None            | 3       |
| SPM              |                 | Store Program Memory                                            | (Z) ← R1:R0                                                                     | None            | -       |
| IN               | Rd, P           | In Port                                                         | $Rd \leftarrow P$                                                               | None            | 1       |
| OUT              | P, Rr           | Out Port                                                        | P ← Rr                                                                          | None            | 1       |





| Mnemonics       | Operands  | Description             | Operation                                | Flags | #Clocks |
|-----------------|-----------|-------------------------|------------------------------------------|-------|---------|
| PUSH            | Rr        | Push Register on Stack  | $STACK \leftarrow Rr$                    | None  | 2       |
| POP             | Rd        | Pop Register from Stack | $Rd \leftarrow STACK$                    | None  | 2       |
| MCU CONTROL INS | TRUCTIONS |                         |                                          |       |         |
| NOP             |           | No Operation            |                                          | None  | 1       |
| SLEEP           |           | Sleep                   | (see specific descr. for Sleep function) | None  | 1       |
| WDR             |           | Watchdog Reset          | (see specific descr. for WDR/timer)      | None  | 1       |
| BREAK           |           | Break                   | For On-chip Debug Only                   | None  | N/A     |

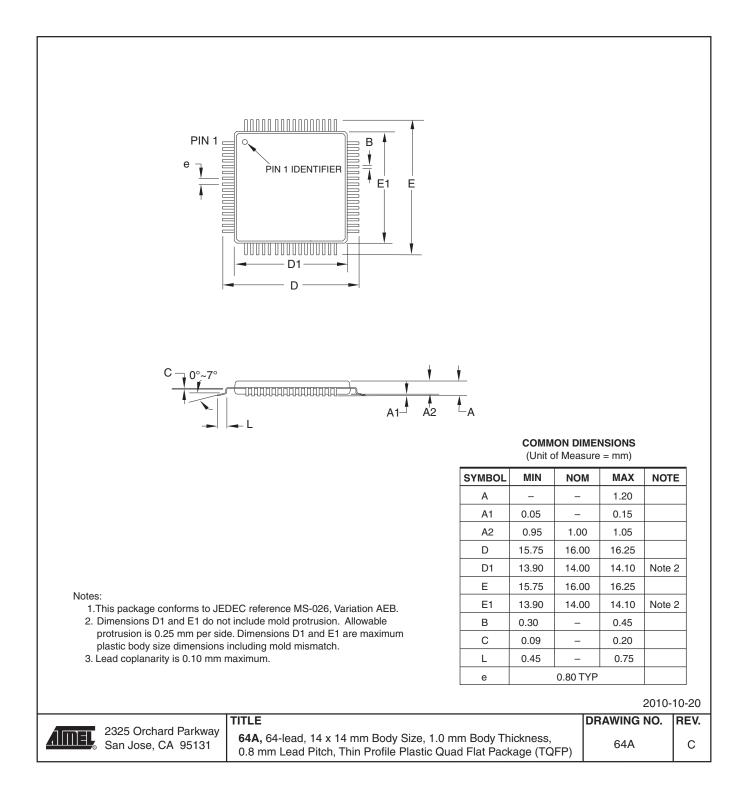
# 6. Ordering Information

| Speed (MHz) <sup>(3)</sup> | Power Supply | Ordering Code <sup>(2)</sup>       | Package <sup>(1)</sup> | Operation Range               |
|----------------------------|--------------|------------------------------------|------------------------|-------------------------------|
| 8                          | 1.8V - 5.5V  | ATmega165PV-8AU<br>ATmega165PV-8MU | 64A<br>64M1            | Industrial<br>(-40°C to 85°C) |
| 16                         | 2.7V - 5.5V  | ATmega165P-16AU<br>ATmega165P-16MU | 64A<br>64M1            | Industrial<br>(-40°C to 85°C) |

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

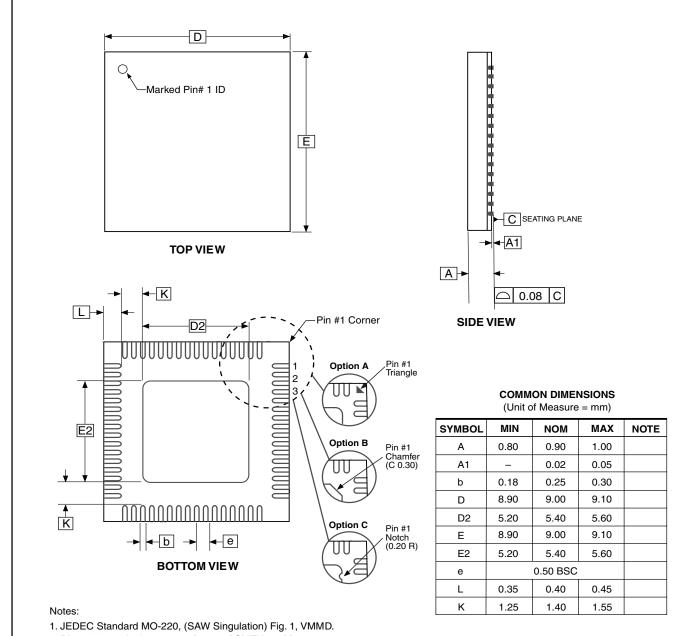
2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

3. For Speed vs.  $V_{\rm CC},$  see Figure 26-1 on page 299 and Figure 26-2 on page 300.


|      | Package Type                                                                                          |
|------|-------------------------------------------------------------------------------------------------------|
| 64A  | 64-Lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)                                     |
| 64M1 | 64-pad, 9 × 9 × 1.0 mm body, lead pitch 0.50 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF) |






## 7. Packaging Information

7.1 64A



# ATmega165P

#### 7.2 64M1



2. Dimension and tolerance conform to ASMEY14.5M-1994.

|                                            |                                                                                                                    | DRAWING NO. | REV. | 1 |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------|------|---|
| 2325 Orchard Parkway<br>San Jose, CA 95131 | <b>64M1</b> , 64-pad, 9 x 9 x 1.0 mm Body, Lead Pitch 0.50 mm, 5.40 mm Exposed Pad, Micro Lead Frame Package (MLF) | 64M1        | н    |   |





# 8. Errata

## 8.1 ATmega165P Rev. G

No known errata.

## 8.2 ATmega165P Rev. A to F

Not sampled.

## 9. Datasheet Revision History

Please note that the referring page numbers in this section are referring to this document. The referring revision in this section are referring to the document revision.

## 9.1 Rev. K 11/10

- 1. Removed "Not recommended for new designs" from the front page.
- 2. Updated the last page according to the new Atmel Brand Style Guide.

## 9.2 Rev. J 08/10

- 1. Removed Reference to LCD Controller in Table 8-1 on page 36.
- 2. Updated "Performing a Page Write" on page 258.
- 3. Minimum wait delay for tWD\_EEPROM, in Table 25-14, "Minimum Wait Delay Before Writing the Next Flash or EEPROM Location," on page 281, has been changed to 3.6ms.
- 4. Updated according to Atmel document standard.

## 9.3 Rev. I 08/07

- 1. Updated "Features" on page 1.
- 2. Updated bit description in "SREG AVR Status Register" on page 14.
- 3. Updated "Starting a Conversion" on page 206.
- 4. Updated Table 21-6 on page 221.
- 5. Updated "System and Reset Characteristics" on page 302.
- 6. Updated representation of bit fields, that is, from WGM13:0 to WGM1[3:0].

## 9.4 Rev. H 11/06

- 1. Updated "Low-frequency Crystal Oscillator" on page 30.
- 2. Updated Table 26-6 on page 303.
- 3. Updated note in Table 26-6 on page 303.

## 9.5 Rev. G 09/06

- 1. Updated "Calibrated Internal RC Oscillator" on page 28.
- 2. Updated "System Control and Reset" on page 43.
- 3. Updated Table 7-9 on page 31 and Table 7-10 on page 31.





- 4. Added note for Table 25-15 on page 282.
- 5. Updated "Parallel Programming Characteristics" on page 279.
- 6. Updated "Electrical Characteristics" on page 297.

### 9.6 Rev. F 08/06

- 1. Updated Table 12-12 on page 76.
- 2. Updated "DC Characteristics" on page 297.

## 9.7 Rev. E 08/06

- 1. Updated "Low-frequency Crystal Oscillator" on page 30.
- 2. Updated "Device Identification Register" on page 230.
- 3. Updated "Signature Bytes" on page 269.
- 4. Added Table 25-6 on page 269.

### 9.8 Rev. D 07/06

- 1. Updated "Register Description" on page 79.
- 2. Updated "Fast PWM Mode" on page 88.
- 3. Updated "Fast PWM Mode" on page 111.
- 4. Updated Features in "USI Universal Serial Interface" on page 188.
- 5. Added "Clock speed considerations" on page 195.
- 6. Updated Table 13-2 on page 93, Table 13-4 on page 94, Table 14-2 on page 119, Table 14-3 on page 120, Table 14-4 on page 121, Table 16-2 on page 143 and Table 16-4 on page 144.
- 7. Updated "UCSRnC USART Control and Status Register n C" on page 185.
- 8. Updated "Register Summary" on page 8.

## 9.9 Rev. C 06/06

- 1. Updated typos.
- 2. Updated "Calibrated Internal RC Oscillator" on page 28.
- 3. Updated "OSCCAL Oscillator Calibration Register" on page 34.
- 4. Added Table 26-2 on page 301.

## 9.10 Rev. B 04/06

- 1. Updated "Calibrated Internal RC Oscillator" on page 28.
- 1. Updated "Sleep Modes" on page 36.

# <sup>20</sup> ATmega165P

## 9.11 Rev. A 03/06

1. Initial revision.





### Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 USA Tel: (+1)(408) 441-0311 Fax: (+1)(408) 487-2600 www.atmel.com

#### Atmel Asia Limited Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon HONG KONG Tel: (+852) 2245-6100 Fax: (+852) 2722-1369

#### Atmel Munich GmbH Business Campus Parkring 4 D-85748 Garching b. Munich GERMANY Tel: (+49) 89-31970-0 Fax: (+49) 89-3194621

#### Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 JAPAN Tel: (+81)(3) 3523-3551 Fax: (+81)(3) 3523-7581

#### © 2010 Atmel Corporation. All rights reserved. / Rev. CORP072610

Atmel<sup>®</sup>, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROF-ITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suit-able for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.