

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

FAIRCHILD

SEMICONDUCTOR

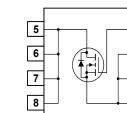
FDS8896 N-Channel PowerTrench[®] MOSFET

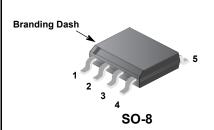
30V, **15A**, **6.0m**Ω

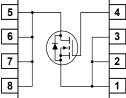
Features

- r_{DS(on)} = 6.0mΩ, V_{GS} = 10V, I_D = 15A
- r_{DS(on)} = 7.3mΩ, V_{GS} = 4.5V, I_D = 14A
- High performance trench technology for extremely low r_{DS(on)}
- Low gate charge
- High power and current handling capability
- RoHS Compliant

General Description


This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low r_{DS(on)} and fast switching speed.


FDS8896 N-Channel PowerTrench[®] MOSFET

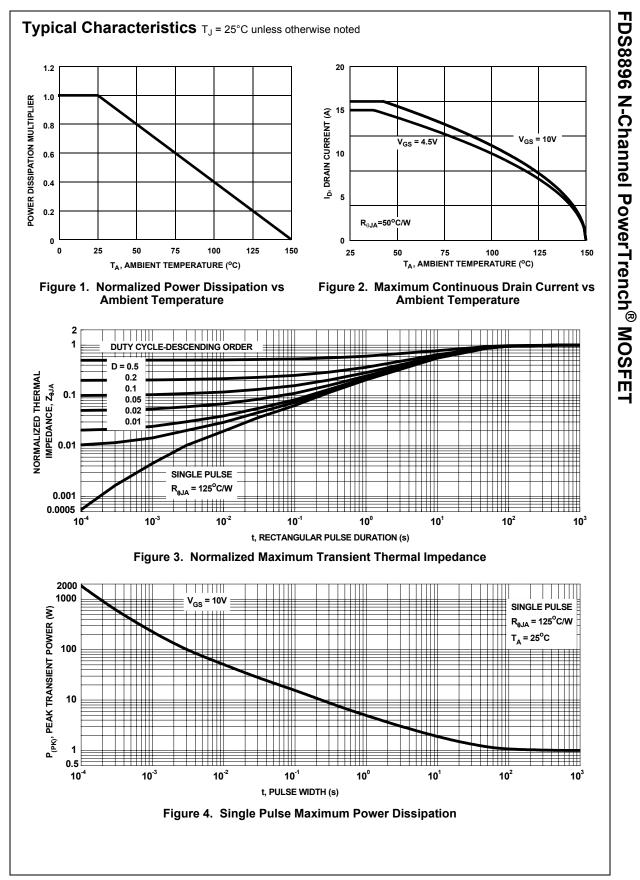

April 2007

Applications

DC/DC converters

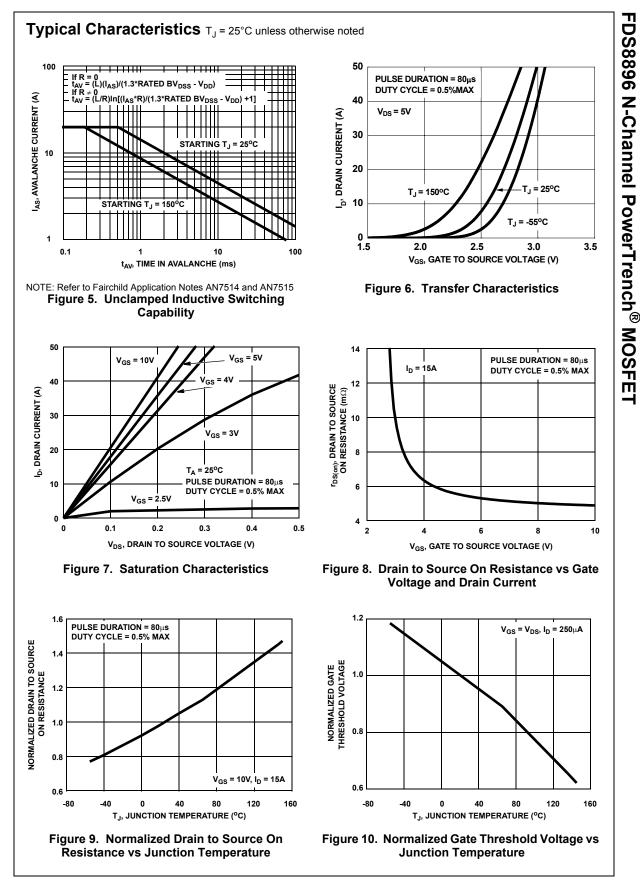
1

Symbol	Parameter				Ratings			Units	
V _{DSS}	Drain to Source Voltage				30		V		
V _{GS}	Gate to Source Voltage				±20			V	
	Drain Cur								
I_	Continuous (T _A = 25°C, V _{GS} = 10V, $R_{\theta JA}$ = 50°C/W)				15			Α	
I _D	Continuou	us (T _A = 25°C, V _{GS} = 4.5V,	$R_{\theta JA} = 50^{\circ}C/W$			14		A	
	Pulsed			110			A		
E _{AS}	Single Pulse Avalanche Energy (Note 1)			196			mJ		
P _D	Power dissipation				2.5			W	
	Derate above 25°C			20			mW/ ^c		
T _J , T _{STG}	Operating	and Storage Temperature				-55 to 150)	°C	
Therma	I Chara	cteristics							
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case (Note 2)			25	25				
$R_{ hetaJA}$	Thermal F	Resistance, Junction to Amb	pient (Note 2a)			50		°C/V	
$R_{ hetaJA}$	Thermal F	Resistance, Junction to Amb	pient (Note 2b)			125		°C/V	
Package	e Marki	ng and Ordering I	Informatio	n					
Device I	Marking	Device	Package	Reel Size	Tape	Width	Qua	Quantity	
FDS8	-	FDS8896	SO-8	330mm	12r		2500 units		
Symbol Off Chara		Parameter	Test	Conditions	Min	Тур	Max	Unit	
	otoriotio	•							
	Drain to S		I _D = 250μA	, V _{GS} = 0V	30	-	-	V	
B _{VDSS}	Drain to S	Source Breakdown Voltage	I _D = 250μA V _{DS} = 24V		30	-	- 1		
	Drain to S						- 1 250	V µA	
B _{VDSS} I _{DSS}	Drain to S Zero Gate	Source Breakdown Voltage	V _{DS} = 24V	T _J = 150 ^o C	-	-			
B _{VDSS} I _{DSS} I _{GSS}	Drain to S Zero Gate Gate to S	Source Breakdown Voltage e Voltage Drain Current ource Leakage Current	V _{DS} = 24V V _{GS} = 0V	T _J = 150 ^o C	-	-	250	μA	
B _{VDSS} I _{DSS} I _{GSS} On Chara	Drain to S Zero Gate Gate to S cteristics	Source Breakdown Voltage e Voltage Drain Current ource Leakage Current	$V_{DS} = 24V$ $V_{GS} = 0V$ $V_{GS} = \pm 20V$	T _J = 150 ^o C	-	-	250	μA	
B _{VDSS}	Drain to S Zero Gate Gate to S cteristics	Source Breakdown Voltage e Voltage Drain Current ource Leakage Current	$V_{DS} = 24V$ $V_{GS} = 0V$ $V_{GS} = \pm 20V$	T _J = 150°C V	-	-	250 ±100	μA nA	
B _{VDSS} I _{DSS} I _{GSS} On Chara V _{GS(TH)}	Drain to S Zero Gate Gate to S Cteristics Gate to S	Source Breakdown Voltage e Voltage Drain Current ource Leakage Current S ource Threshold Voltage	$V_{DS} = 24V$ $V_{GS} = 0V$ $V_{GS} = \pm 20V$ $V_{GS} = \pm 20V$	$T_{J} = 150^{\circ}C$ V $J_{D} = 250\mu A$ $T_{GS} = 10V$	- - 1.2		250 ±100 2.5	μA nA V	
B _{VDSS} I _{DSS} I _{GSS} On Chara	Drain to S Zero Gate Gate to S Cteristics Gate to S	Source Breakdown Voltage e Voltage Drain Current ource Leakage Current	$V_{DS} = 24V$ $V_{GS} = 0V$ $V_{GS} = \pm 20V$ $V_{GS} = V_{DS}$ $I_D = 15A, V$ $I_D = 14A, V$ $I_D = 15A, V$	$T_{J} = 150^{\circ}C$ V $J_{GS} = 10V$ $J_{GS} = 10V$ $J_{GS} = 4.5V$ $J_{GS} = 10V,$	- - 1.2	- - - 4.9 5.8	250 ±100 2.5 6.0 7.3	μA nA V	
B _{VDSS} I _{DSS} I _{GSS} On Chara V _{GS(TH)} r _{DS(on)}	Drain to S Zero Gate Gate to S cteristics Gate to S Drain to S	Source Breakdown Voltage e Voltage Drain Current ource Leakage Current s ource Threshold Voltage Source On Resistance	$V_{DS} = 24V V_{GS} = 0V V_{GS} = \pm 20V V_{GS} = \pm 20V I_D = 15A, V I_D = 15A, V I_D = 14A, V V_{DS} = 14A, V V_{DS} = 24V V_{DS} = 24V V_{DS} = 24V V_{DS} = 24V V_{DS} = 0V V_{DS} = 0V V_{DS} = 0V V_{DS} = 10V V_{DS} = 10$	$T_{J} = 150^{\circ}C$ V $J_{GS} = 10V$ $J_{GS} = 10V$ $J_{GS} = 4.5V$ $J_{GS} = 10V,$	- - 1.2	- - - 4.9	250 ±100 2.5 6.0	μA nA	
B _{VDSS} I _{DSS} I _{GSS} On Chara V _{GS(TH)} r _{DS(on)} Dynamic	Drain to S Zero Gate Gate to S Gate to S Drain to S Characte	Source Breakdown Voltage e Voltage Drain Current ource Leakage Current s ource Threshold Voltage Source On Resistance eristics	$V_{DS} = 24V$ $V_{GS} = 0V$ $V_{GS} = \pm 20V$ $V_{GS} = V_{DS}$ $I_D = 15A, V$ $I_D = 14A, V$ $I_D = 15A, V$	$T_{J} = 150^{\circ}C$ V $J_{GS} = 10V$ $J_{GS} = 10V$ $J_{GS} = 4.5V$ $J_{GS} = 10V,$	- - - - - - -	- - 4.9 5.8 7.8	250 ±100 2.5 6.0 7.3 10.1	μA nA V mΩ	
B _{VDSS} I _{DSS} On Chara V _{GS(TH)} r _{DS(on)} Dynamic C _{ISS}	Drain to S Zero Gate Gate to S Gate to S Drain to S Characte Input Cap	Source Breakdown Voltage e Voltage Drain Current ource Leakage Current s ource Threshold Voltage Source On Resistance eristics acitance	$V_{DS} = 24V$ $V_{GS} = 0V$ $V_{GS} = \pm 20V$ $V_{GS} = V_{DS}$ $I_D = 15A, V$ $I_D = 14A, V$ $I_D = 15A, V$ $T_J = 150^{\circ}C$	$T_{J} = 150^{\circ}C$ V $J_{GS} = 10V$ $J_{GS} = 10V$ $J_{GS} = 10V$ $J_{GS} = 10V,$ $J_{GS} = 10V,$	- - - - - -	- - 4.9 5.8 7.8 2525	250 ±100 2.5 6.0 7.3 10.1	μA nA V mΩ	
B _{VDSS} I _{DSS} I _{GSS} On Chara V _{GS(TH)} r _{DS(on)} Dynamic C _{ISS} C _{OSS}	Drain to S Zero Gate Gate to S Cteristics Gate to S Drain to S Characte Input Cap Output Ca	Source Breakdown Voltage e Voltage Drain Current ource Leakage Current s ource Threshold Voltage Source On Resistance eristics acitance apacitance	$V_{DS} = 24V$ $V_{GS} = 0V$ $V_{GS} = \pm 20V$ $V_{GS} = V_{DS}$ $I_D = 15A, V$ $I_D = 14A, V$ $I_D = 15A, V$ $T_J = 150^{\circ}C$	$T_{J} = 150^{\circ}C$ V $J_{GS} = 10V$ $J_{GS} = 10V$ $J_{GS} = 4.5V$ $J_{GS} = 10V,$	- - - - - - -	- - 4.9 5.8 7.8 2525 490	250 ±100 2.5 6.0 7.3 10.1	μA nA V mΩ pF	
B _{VDSS} I _{DSS} I _{GSS} On Chara V _{GS(TH)} r _{DS(on)} Tynamic C _{ISS} C _{OSS} C _{RSS}	Drain to S Zero Gate Gate to S Cteristics Gate to S Drain to S Characte Input Cap Output Ca Reverse	Source Breakdown Voltage e Voltage Drain Current ource Leakage Current s ource Threshold Voltage Source On Resistance eristics acitance apacitance Transfer Capacitance	$V_{DS} = 24V$ $V_{GS} = 0V$ $V_{GS} = \pm 20V$ $I_D = 15A, V$ $I_D = 15A, V$ $I_D = 15A, V$ $I_J = 150^{\circ}C$ $V_{DS} = 15V$ $f = 1MHz$	$T_{J} = 150^{\circ}C$ V V V V V (GS = 10V V (GS = 10V, V (GS = 10V, V V (GS = 0V, V V GS = 0V, V V GS = 0V,	- - - - - - -	- - 4.9 5.8 7.8 2525 490 300	250 ±100 2.5 6.0 7.3 10.1	μA nA V mΩ pF pF	
B _{VDSS} I _{DSS} I _{GSS} On Chara V _{GS(TH)} r _{DS(on)} r _{DS(on)} Dynamic C _{ISS} C _{GSS} C _{RSS} R _G	Drain to S Zero Gate Gate to S Cteristics Gate to S Drain to S Characte Input Cap Output Ca Reverse 1 Gate Res	Source Breakdown Voltage e Voltage Drain Current ource Leakage Current s ource Threshold Voltage Source On Resistance eristics acitance apacitance Transfer Capacitance istance	$V_{DS} = 24V$ $V_{GS} = 0V$ $V_{GS} = \frac{1}{20}$ $V_{DS} = \frac{1}{20}$ $V_{DS} = \frac{1}{15A}, V$ $I_{D} = 15A, V$ $I_{D} = 15A, V$ $T_{J} = 150^{\circ}C$ $V_{DS} = 15V,$ $f = 1MHz$ $V_{GS} = 0.5V$	$T_{J} = 150^{\circ}C$ V $I_{GS} = 250\mu A$ $I_{GS} = 10V$ $I_{GS} = 4.5V$ $I_{GS} = 10V,$ $V_{GS} = 10V,$ $V_{GS} = 0V,$ $I_{GS} = 0V,$ $I_{GS} = 10Hz$	- - - - - - - - - - - - - - - 0.6	- - 4.9 5.8 7.8 2525 490 300 2.4	250 ±100 2.5 6.0 7.3 10.1 - - - 4.2	μA nA W mΩ pF pF Ω	
B _{VDSS} I _{DSS} On Chara V _{GS(TH)} r _{DS(on)} Dynamic C _{ISS} C _{OSS} C _{RSS} R _G Q _{g(TOT)}	Drain to S Zero Gate Gate to S Cteristics Gate to S Drain to S Characte Input Cap Output Ca Reverse T Gate Res Total Gate	Source Breakdown Voltage e Voltage Drain Current ource Leakage Current S ource Threshold Voltage Source On Resistance eristics acitance apacitance Transfer Capacitance istance e Charge at 10V	$V_{DS} = 24V$ $V_{GS} = 0V$ $V_{GS} = 120V$ $V_{GS} = 15A, V$ $I_D = 15A, V$ $I_D = 15A, V$ $T_J = 150^{\circ}C$ $V_{DS} = 15V,$ $f = 1MHz$ $V_{GS} = 0.5V$ $V_{CS} = 0.5V$	$T_{J} = 150^{\circ}C$ V V V V (SS = 10V V (GS = 4.5V V (GS = 10V, SS	- - - - - - - - - - - - - 0.6 -	- - 4.9 5.8 7.8 2525 490 300 2.4 50	250 ±100 2.5 6.0 7.3 10.1 - - - 4.2 67	μA nA V mΩ pF pF Ω nC	
B _{VDSS} I _{DSS} On Chara V _{GS(TH)} r _{DS(on)} Dynamic C _{ISS} C _{OSS} C _{RSS} R _G Q _{g(TOT)} Q _{g(5)}	Drain to S Zero Gate Gate to S Cteristics Gate to S Drain to S Drain to S Characte Input Cap Output Ca Gate Res Total Gate Total Gate	Source Breakdown Voltage e Voltage Drain Current ource Leakage Current Source Threshold Voltage Source On Resistance eristics acitance apacitance apacitance apacitance charge at 10V e Charge at 5V	$V_{GS} = 24V$ $V_{GS} = 0V$ $V_{GS} = 120V$ $I_D = 15A, V$ $I_D = 15A, V$ $I_D = 15A, V$ $T_J = 150^{\circ}C$ $V_{DS} = 15V$ $f = 1MHz$ $V_{GS} = 0.5V$ $V_{GS} = 0.5V$ $V_{CS} = 0.5V$	$T_{J} = 150^{\circ}C$ V $I_{D} = 250\mu A$ $I_{GS} = 10V$ $I_{GS} = 4.5V$ $I_{GS} = 10V,$ $V_{GS} = 10V,$ $V_{GS} = 0V,$ $I_{GS} = 0V,$ $V_{DD} = 15V$ $I_{D} = 15A$	- - - - - - - - - - - - - - - - - - -	- - 4.9 5.8 7.8 2525 490 300 2.4 50 28	250 ±100 2.5 6.0 7.3 10.1 - - 4.2 67 36	μΑ nA V mΩ pF pF pF Ω nC nC	
B_{VDSS} I_{DSS} I_{GSS} On Chara $V_{GS(TH)}$ $r_{DS(on)}$ $Dynamic$ C_{ISS} C_{RSS} R_{G} $Q_{g(TOT)}$ $Q_{g(5)}$ $Q_{g(TH)}$	Drain to S Zero Gate Gate to S Cteristics Gate to S Drain to S Characte Input Cap Output Ca Output Ca Gate Res Total Gate Total Gate Threshold	Source Breakdown Voltage e Voltage Drain Current ource Leakage Current Source Threshold Voltage Source On Resistance eristics acitance apacitance apacitance apacitance apacitance apacitance acitance apacitance Charge at 10V a Charge at 5V d Gate Charge	$V_{DS} = 24V$ $V_{GS} = 0V$ $V_{GS} = 120V$ $V_{GS} = 15A, V$ $I_D = 15A, V$ $I_D = 15A, V$ $T_J = 150^{\circ}C$ $V_{DS} = 15V,$ $f = 1MHz$ $V_{GS} = 0.5V$ $V_{CS} = 0.5V$	$T_{J} = 150^{\circ}C$ V $I_{D} = 250\mu A$ $I_{GS} = 10V$ $I_{GS} = 4.5V$ $I_{GS} = 10V,$ $V_{GS} = 10V,$ $V_{GS} = 0V,$ $I_{GS} = 0V,$ $I_{GS} = 10Hz$ $I_{GS} = 10V,$ $I_{GS} = $	- - - - - - - - - - - - - - - - - - -	- - 4.9 5.8 7.8 2525 490 300 2.4 50 28 2.5	250 ±100 2.5 6.0 7.3 10.1 - - 4.2 67 36 3.2	μΑ nA V mΩ pF pF pF Ω nC nC nC	
B _{VDSS} I _{DSS} On Chara V _{GS(TH)} r _{DS(on)} Dynamic C _{ISS} C _{OSS} C _{RSS} R _G Q _{g(TOT)} Q _{g(5)}	Drain to S Zero Gate Gate to S Cteristics Gate to S Drain to S Characte Input Cap Output Ca Output Ca Gate Res Total Gate Total Gate Threshold Gate to S	Source Breakdown Voltage e Voltage Drain Current ource Leakage Current Source Threshold Voltage Source On Resistance eristics acitance apacitance apacitance apacitance charge at 10V e Charge at 5V	$V_{GS} = 24V$ $V_{GS} = 0V$ $V_{GS} = 120V$ $I_D = 15A, V$ $I_D = 15A, V$ $I_D = 15A, V$ $T_J = 150^{\circ}C$ $V_{DS} = 15V$ $f = 1MHz$ $V_{GS} = 0.5V$ $V_{GS} = 0.5V$ $V_{CS} = 0.5V$	$T_{J} = 150^{\circ}C$ V $I_{D} = 250\mu A$ $I_{GS} = 10V$ $I_{GS} = 4.5V$ $I_{GS} = 10V,$ $V_{GS} = 10V,$ $V_{GS} = 0V,$ $I_{GS} = 0V,$ $V_{DD} = 15V$ $I_{D} = 15A$	- - - - - - - - - - - - - - - - - - -	- - 4.9 5.8 7.8 2525 490 300 2.4 50 28	250 ±100 2.5 6.0 7.3 10.1 - - 4.2 67 36	μΑ nA V mΩ pF pF pF Ω nC nC	

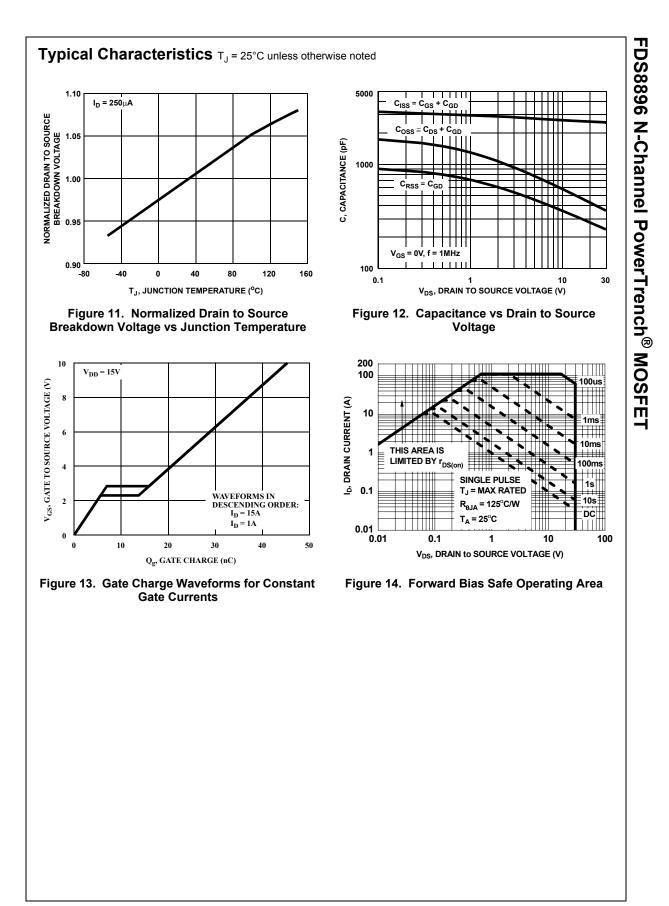

Switchin	Switching Characteristics (V _{GS} = 10V)						
t _{ON}	Turn-On Time		-	-	68	ns	
t _{d(ON)}	Turn-On Delay Time		-	8	-	ns	
t _r	Rise Time	V _{DD} = 15V, I _D = 14A V _{GS} = 10V, R _{GS} = 6.2Ω	-	37	-	ns	
t _{d(OFF)}	Turn-Off Delay Time	V_{GS} = 10V, R_{GS} = 6.2 Ω	-	60	-	ns	
t _f	Fall Time		-	24	-	ns	
t _{OFF}	Turn-Off Time		-	-	126	ns	

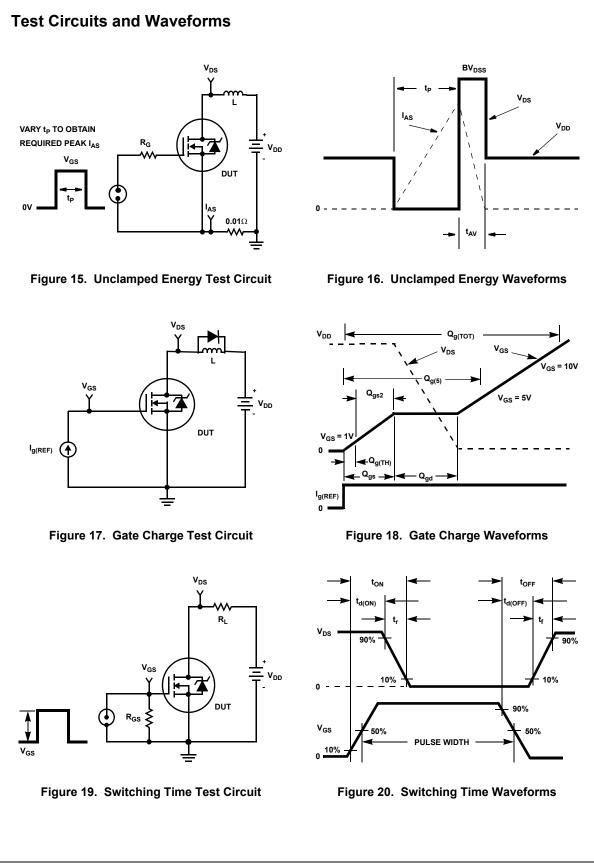
Drain-Source Diode Characteristics

V _{SD}	Source to Drain Diode Voltage	I _{SD} = 15A	-	-	1.25	V
		I _{SD} = 2.1A	-	-	1.0	V
t _{rr}	Reverse Recovery Time	I _{SD} = 15A, dI _{SD} /dt = 100A/μs	-	-	29	ns
Q _{RR}	Reverse Recovered Charge	I _{SD} = 15A, dI _{SD} /dt = 100A/μs	-	-	15	nC


Notes:
1: Starting T_J = 25°C, L = 1mH, I_{AS} = 19.8A, V_{DD} = 30V, V_{GS} = 10V.
2: R_{θJA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{θJC} is guaranteed by design while R_{θJA} is determined by the user's board design.
a) 50°C/W when mounted on a 1in² pad of 2 oz copper.

b) 125°C/W when mounted on a minimum pad.




©2007 Fairchild Semiconductor Corporation FDS8896 Rev. B

www.fairchildsemi.com

©2007 Fairchild Semiconductor Corporation FDS8896 Rev. B

©2007 Fairchild Semiconductor Corporation FDS8896 Rev. B FDS8896 N-Channel PowerTrench[®] MOSFET

Thermal Resistance vs. Mounting Pad Area

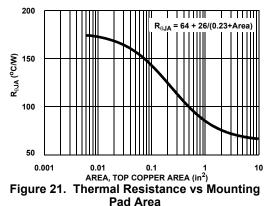
The maximum rated junction temperature, T_{JM} , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P_{DM} , in an application. Therefore the application's ambient temperature, T_A (°C), and thermal resistance $R_{\theta JA}$ (°C/W) must be reviewed to ensure that T_{JM} is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.

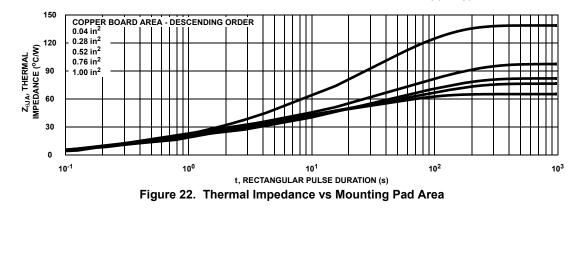
$$P_{DM} = \frac{(T_{JM} - T_A)}{R_{\theta JA}}$$
(EQ. 1)

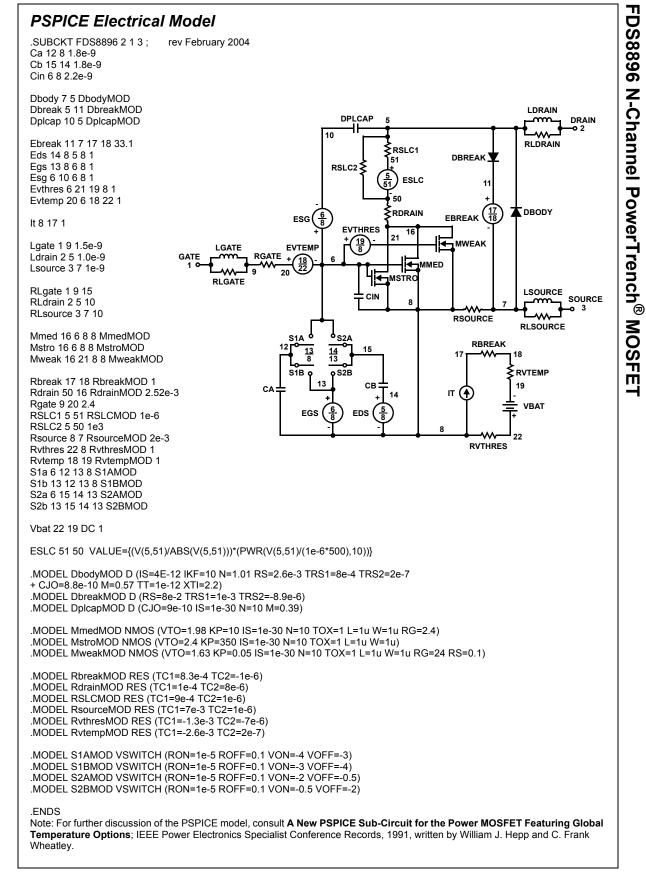
In using surface mount devices such as the SO8 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of P_{DM} is complex and influenced by many factors:

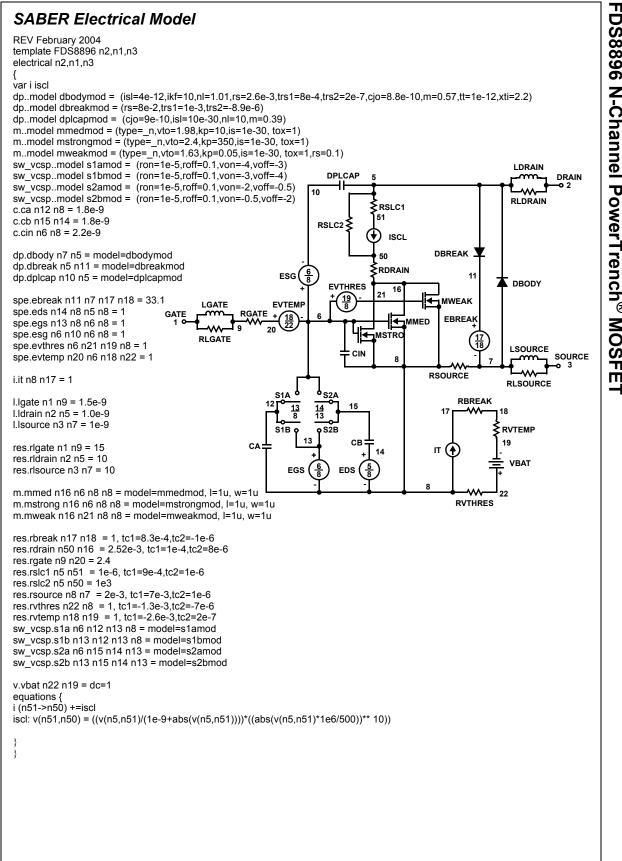
- Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
- 2. The number of copper layers and the thickness of the board.
- 3. The use of external heat sinks.
- 4. The use of thermal vias.
- 5. Air flow and board orientation.
- For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.

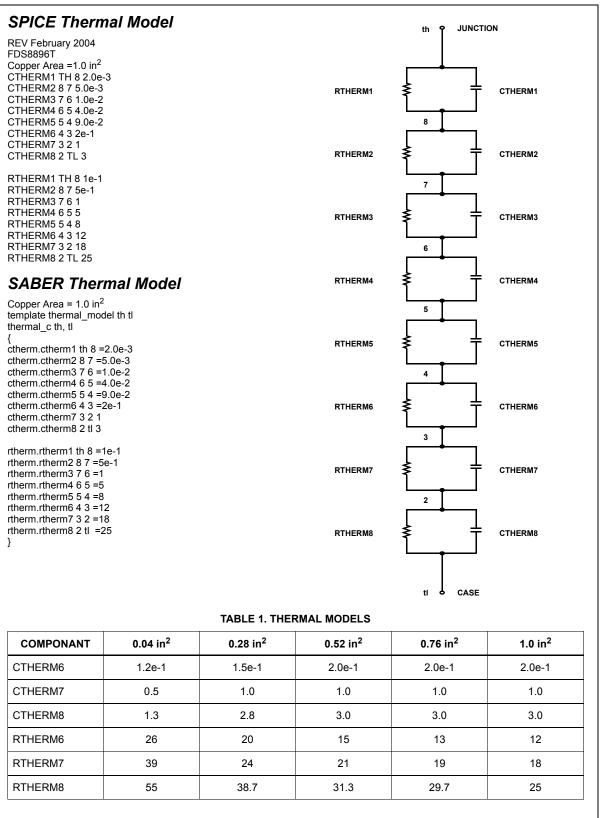
Fairchild provides thermal information to assist the designer's preliminary application evaluation. Figure 21 defines the $R_{\theta JA}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient


thermal impedance curve.


Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2. The area, in square inches is the top copper area including the gate and source pads.


$$R_{\theta JA} = 64 + \frac{26}{0.23 + Area}$$
 (EQ. 2)


The transient thermal impedance (Z_{0JA}) is also effected by varied top copper board area. Figure 22 shows the effect of copper pad area on single pulse transient thermal impedance. Each trace represents a copper pad area in square inches corresponding to the descending list in the graph. Spice and SABER thermal models are provided for each of the listed pad areas.


Copper pad area has no perceivable effect on transient thermal impedance for pulse widths less than 100ms. For pulse widths less than 100ms the transient thermal impedance is determined by the die and package. Therefore, CTHERM1 through CTHERM5 and RTHERM1 through RTHERM5 remain constant for each of the thermal models. A listing of the model component values is available in Table 1.

П

©2007 Fairchild Semiconductor Corporation FDS8896 Rev. B

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx® Across the board. Around the world™ ActiveArray™ Bottomless™ Build it Now™ CoolFET™ CROSSVOLT™ CTL™ Current Transfer Logic™ DOME™ E²CMOS™ EcoSPARK[®] EnSigna™ FACT Quiet Series™ FACT® $\mathsf{FAST}^{\mathbb{R}}$ FASTr™ FPS™ FRFET® GlobalOptoisolator™ GTO™ HiSeC™

i-Lo™ ImpliedDisconnect[™] IntelliMAX[™] ISOPLANAR™ MICROCOUPLER™ MicroPak™ MICROWIRE™ Motion-SPM™ MSX™ MSXPro™ OCX™ OCXPro™ **OPTOLOGIC**[®] **OPTOPLANAR[®]** PACMAN™ PDP-SPM™ POP™ Power220[®] Power247[®] PowerEdae™ PowerSaver™

 $\mathsf{PowerTrench}^{\mathbb{R}}$ Programmable Active Droop™ QFET® QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect™ ScalarPump™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TCM™ The Power Franchise[®] UTM

Power-SPM™

TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyWire™ TruTranslation™ µSerDes™ UHC® UniFET™ VCX™ Wire™

Т

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the leading age be reaccordence by ourgeted to reput to a classificant the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC