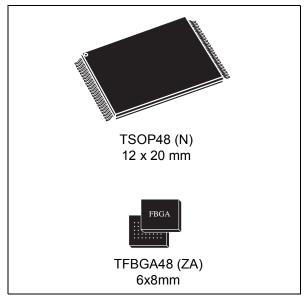


M29W064FT M29W064FB


64-Mbit (8 Mbit x8 or 4 Mbit x16, page, boot block)

3 V supply flash memory

Preliminary Data

Features

- Supply voltage
 - V_{CC} = 2.7 V to 3.6 V for program, erase, read
 - V_{PP} =12 V for fast program (optional)
- Asynchronous random/page read
 - Page width: 4 words
 - Page access: 25 ns
 - Random access: 60, 70 ns
- Programming time
 - 10 μs per byte/word typical
 - 4 words/8 bytes program
- 135 memory blocks
 - 1 boot block and 7 parameter blocks,
 8 Kbytes each (top or bottom location)
 - 127 main blocks, 64 Kbytes each
- Program/erase controller
 - Embedded byte/word program algorithms
- Program/erase suspend and resume
 - Read from any block during program suspend
 - Read and program another block during erase suspend
- Unlock Bypass Program command
 - Faster production/batch programming
- V_{PP}/WP pin for fast program and write protect
- Temporary block unprotection mode
- Common flash interface
 - 64-bit security code

- 100,000 program/erase cycles per block
- Low power consumption
 - Standby and automatic standby
- Electronic signature
 - Manufacturer code: 0020h
- Automotive device grade 3
 - Temperature: -40 to 125 °C
 - Automotive grade certified (AEC-Q100)
- Automotive device grade 6
 - Temperature: -40 to 85 °C
 - Automotive grade certified (AEC-Q100)
- RoHS compliant packages

Table 1. Device summary

Root part number	Device code
M29W064FT	22EDh
M29W064FB	22FDh

Contents

1	Desc	iption	7									
2	Sign	descriptions	11									
	2.1	Address inputs (A0-A21)	11									
	2.2	Data inputs/outputs (DQ0-DQ7)	11									
	2.3	Data inputs/outputs (DQ8-DQ14)	11									
	2.4	Data input/output or address input (DQ15A-1)	11									
	2.5	Chip Enable (E)	11									
	2.6	Output Enable (G)	11									
	2.7	Write Enable (W)	12									
	2.8	V_{PP} /write protect (V_{PP} / \overline{WP})	12									
	2.9	Reset/block temporary unprotect (RP)	13									
	2.10	Ready/busy output (RB)	13									
	2.11	Byte/word organization select (BYTE)										
	2.12	V _{CC} supply voltage (2.7 V to 3.6 V)	14									
	2.13	V _{SS} ground	14									
3	Bus	perations1	15									
	3.1	Bus read	15									
	3.2	Bus write	15									
	3.3	Output disable	15									
	3.4	Standby	15									
	3.5	Automatic standby	16									
	3.6	Special bus operations	16									
		3.6.1 Electronic signature	16									
		3.6.2 Block protect and chip unprotect	16									
4	Com	nand interface	18									
	4.1	Standard commands	18									
		4.1.1 Read/Reset command	18									
		4.1.2 Auto Select command	18									
		4.1.3 Read CFI Query command	18									

		4.1.4	Chip Erase command	19
		4.1.5	Block Erase command	20
		4.1.6	Erase Suspend command	20
		4.1.7	Erase Resume command	21
		4.1.8	Program Suspend command	21
		4.1.9	Program Resume command	21
		4.1.10	Program command	22
	4.2	Fast pro	gram commands	23
		4.2.1	Double Byte Program command	23
		4.2.2	Quadruple Byte Program command	23
		4.2.3	Octuple Byte Program command	24
		4.2.4	Double Word Program command	24
		4.2.5	Quadruple Word Program command	25
		4.2.6	Unlock Bypass command	25
		4.2.7	Unlock Bypass Program command	25
		4.2.8	Unlock Bypass Reset command	25
	4.3	Block Pr	otection commands	26
		4.3.1	Block Protect and Chip Unprotect commands	26
5	Status	reaiste	er	30
	5.1	_	ling bit (DQ7)	
	5.2	-	it (DQ6)	
	5.3		(DQ5)	
	5.4		ner bit (DQ3)	
	5.5	Alternati	ve toggle bit (DQ2)	31
6	Maxim	num rati	ngs	34
7	DC an	d AC pa	arameters	35
8	Packa	ge mec	hanical	44
9	Order	ing info	rmation	46
Appendix	A BI	ock add	lresses	47
Appendix	в Со	ommon	flash interface (CFI)	57
			, ,	

Appendix	C	Block protection	2
	C.1	Programmer technique	2
	C.2	In-system technique	2
10	Rev	ision history	8

List of tables

Table 1.	Device summary	1
Table 2.	Signal names	8
Table 3.	Hardware protection	. 12
Table 4.	Bus operations, BYTE = V _{IL}	. 17
Table 5.	Bus operations, BYTE = V _{IH}	. 17
Table 6.	Commands, 16-bit mode, BYTE = V _{IH}	27
Table 7.	Commands, 8-bit mode, BYTE = V _{IL}	28
Table 8.	Program, erase times and program, erase endurance cycles	. 29
Table 9.	Status register bits	. 32
Table 10.	Absolute maximum ratings	. 34
Table 11.	Operating and AC measurement conditions	. 35
Table 12.	Device capacitance	
Table 13.	DC characteristics	. 36
Table 14.	Read AC characteristics	. 38
Table 15.	Write AC characteristics, write enable controlled	. 40
Table 16.	Write AC characteristics, chip enable controlled	. 42
Table 17.	Reset/block temporary unprotect AC characteristics	. 43
Table 18.	TSOP48 – 48 lead plastic thin small outline, 12 x 20 mm, package mechanical data	. 44
Table 19.	TFBGA48 6x8mm - 6x8 active ball array, 0.8mm pitch, package mechanical data	. 45
Table 20.	Ordering information scheme	. 46
Table 21.	Top boot block addresses, M29W064FT	. 47
Table 22.	Bottom boot block addresses, M29W064FB	. 52
Table 23.	Query structure overview	. 57
Table 24.	CFI query identification string	. 58
Table 25.	CFI query system interface information	. 58
Table 26.	Device geometry definition	. 59
Table 27.	Primary algorithm-specific extended query table	. 60
Table 28.	Security code area	. 61
Table 29.	Programmer technique bus operations, BYTE = V _{IH} or V _{IL}	63
Table 30.	Document revision history	. 68

List of figures

Figure 1.	Logic diagram	8
Figure 2.	TSOP connections	
Figure 3.	TFBGA48 connections (top view through package)	10
Figure 4.	Data polling flowchart	32
Figure 5.	Data toggle flowchart	33
Figure 6.	AC measurement I/O waveform	35
Figure 7.	AC measurement load circuit	35
Figure 8.	Read mode AC waveforms	37
Figure 9.	Page read AC waveforms	37
Figure 10.	Write AC waveforms, write enable controlled	39
Figure 11.	Write AC waveforms, chip enable controlled	41
Figure 12.	Reset/block temporary unprotect AC waveforms	42
Figure 13.	Accelerated program timing waveforms	43
Figure 14.	TSOP48 – 48 lead plastic thin small outline, 12 x 20 mm, top view package outline	44
Figure 15.	TFBGA48 6x8mm - 6x8 active ball array, 0.8mm pitch, package outline	45
Figure 16.	Programmer equipment group protect flowchart	64
Figure 17.	Programmer equipment chip unprotect flowchart	65
Figure 18.	In-system equipment group protect flowchart	66
Figure 19.	In-system equipment chip unprotect flowchart	67

1 Description

The M29W064F is a 64-Mbit (8 Mbit x 8 or 4 Mbit x 16) non-volatile memory that can be read, erased and reprogrammed. These operations can be performed using a single low voltage (2.7 to 3.6 V) supply. On power-up the memory defaults to its read mode.

The memory is divided into blocks that can be erased independently so it is possible to preserve valid data while old data is erased. Blocks can be protected in units of 256 Kbytes (generally groups of four 64 Kbyte blocks), to prevent accidental program or erase commands from modifying the memory. Program and erase commands are written to the command interface of the memory. An on-chip program/erase controller simplifies the process of programming or erasing the memory by taking care of all of the special operations that are required to update the memory contents. The end of a program or erase operation can be detected and any error conditions identified. The command set required to control the memory is consistent with JEDEC standards.

The device features an asymmetrical blocked architecture. The device has an array of 135 blocks:

- 8 parameters blocks of 8 Kbytes each (or 4 Kwords each)
- 127 main blocks of 64 Kbytes each (or 32 Kwords each)

M29W064FT has the parameter blocks at the top of the memory address space while the M29W064FB locates the parameter blocks starting from the bottom.

Chip Enable, Output Enable and Write Enable signals control the bus operation of the memory. They allow simple connection to most microprocessors, often without additional logic.

The V_{PP}/\overline{WP} signal is used to enable faster programming of the device, enabling multiple word/byte programming. If this signal is held at V_{SS} , the boot block, and its adjacent parameter block, are protected from program and erase operations.

The device supports asynchronous random read and page read from all blocks of the memory array.

The memories are offered in TSOP48 (12 x 20 mm) and in TFBGA48 (6 x 8 mm) package.

Figure 1. Logic diagram

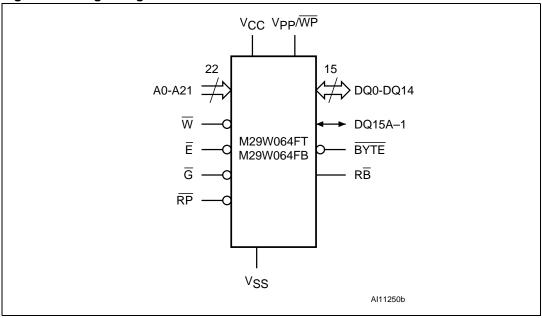
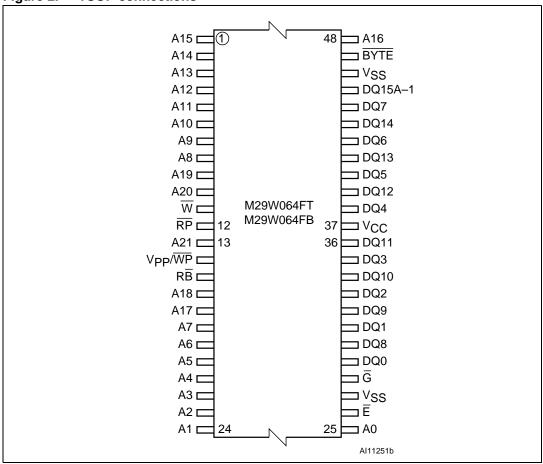
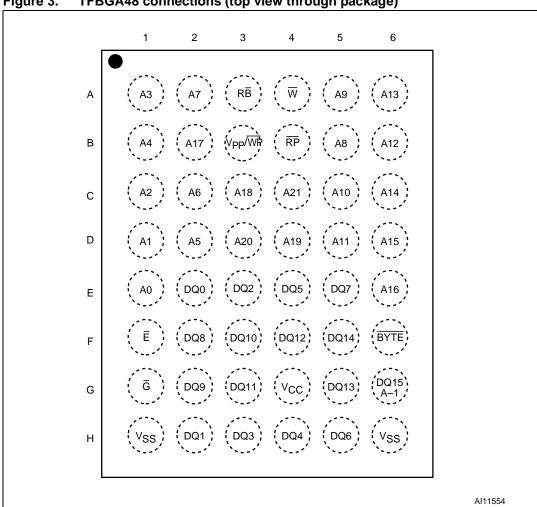




Table 2. Signal names

Name	Description	Direction
A0-A21	Address inputs	Inputs
DQ0-DQ7	Data inputs/outputs	I/O
DQ8-DQ14	Data inputs/outputs	I/O
DQ15A-1 (or DQ15)	Data input/output or address input (or data input/output)	I/O
Ē	Chip Enable	Input
G	Output Enable	Input
W	Write Enable	Input
RP	Reset/block temporary unprotect	Input
RB	Ready/busy output	Output
BYTE	Byte/word organization select	Input
V _{CC}	Supply voltage	Supply
V _{PP} /WP	Supply voltage for fast program (optional) or write protect	Supply
V _{SS}	Ground	_
NC	Not connected internally	_

Figure 2. TSOP connections

2 Signal descriptions

See Figure 1: Logic diagram, and Table 2: Signal names, for a brief overview of the signals connected to this device.

2.1 Address inputs (A0-A21)

The address inputs select the cells in the memory array to access during bus read operations. During bus write operations they control the commands sent to the command interface of the program/erase controller.

2.2 Data inputs/outputs (DQ0-DQ7)

The data I/O outputs the data stored at the selected address during a bus read operation. During bus write operations they represent the commands sent to the command interface of the program/erase controller.

2.3 Data inputs/outputs (DQ8-DQ14)

The data I/O outputs the data stored at the selected address during a bus read operation when $\overline{\text{BYTE}}$ is High, V_{IH} . When $\overline{\text{BYTE}}$ is Low, V_{IL} , these pins are not used and are high impedance. During bus write operations the command register does not use these bits. When reading the status register these bits should be ignored.

2.4 Data input/output or address input (DQ15A-1)

When $\overline{\text{BYTE}}$ is High, V_{IH}, this pin behaves as a data input/output pin (as DQ8-DQ14). When $\overline{\text{BYTE}}$ is Low, V_{IL}, this pin behaves as an address pin; DQ15A–1 Low will select the LSB of the addressed word, DQ15A–1 High will select the MSB. Throughout the text consider references to the Data input/output to include this pin when $\overline{\text{BYTE}}$ is High and references to the address inputs to include this pin when $\overline{\text{BYTE}}$ is Low except when stated explicitly otherwise.

2.5 Chip Enable (E)

The Chip Enable, \overline{E} , activates the memory, allowing bus read and bus write operations to be performed. When Chip Enable is High, V_{IH} , all other pins are ignored.

2.6 Output Enable $\overline{(G)}$

The Output Enable, \overline{G} , controls the bus read operation of the memory.

2.7 Write Enable (W)

The Write Enable, \overline{W} , controls the bus write operation of the memory's command interface.

2.8 V_{PP} /write protect (V_{PP}/\overline{WP})

The V_{PP} /write protect pin provides two functions. The V_{PP} function allows the memory to use an external high voltage power supply to reduce the time required for unlock bypass program operations. The write protect function provides a hardware method of protecting the two outermost boot blocks. The V_{PP} /write protect pin must not be left floating or unconnected.

When V_{PP} /write protect is Low, V_{IL} , the memory protects the two outermost boot blocks; program and erase operations in this block are ignored while V_{PP} /Write Protect is Low, even when \overline{RP} is at V_{ID} .

When V_{PP} /write protect is High, V_{IH} , the memory reverts to the previous protection status of the two outermost boot blocks. Program and erase operations can now modify the data in the two outermost boot blocks unless the block is protected using block protection.

Applying V_{PPH} to the V_{PP}/\overline{WP} pin will temporarily unprotect any block previously protected (including the two outermost parameter blocks) using a high voltage block protection technique (in-system or programmer technique). See *Table 3: Hardware protection* for details.

When V_{PP} /write protect is raised to V_{PP} the memory automatically enters the unlock bypass mode. When V_{PP} /write protect returns to V_{IH} or V_{IL} normal operation resumes. During unlock bypass program operations the memory draws I_{PP} from the pin to supply the programming circuits. See the description of the Unlock Bypass command in *Section 4:* Command interface. The transitions from V_{IH} to V_{PP} and from V_{PP} to V_{IH} must be slower than t_{VHVPP} , see Figure 13: Accelerated program timing waveforms.

Never raise V_{PP} /Write Protect to V_{PP} from any mode except read mode, otherwise the memory may be left in an indeterminate state.

A 0.1 μ F capacitor should be connected between the V_{PP}/write protect pin and the V_{SS} ground pin to decouple the current surges from the power supply. The PCB track widths must be sufficient to carry the currents required during unlock bypass program, I_{PP}.

Table 3. Hardware protection

V _{PP} /WP	RP	Function
V	V_{IH}	2 outermost parameter blocks protected from program/erase operations
V _{IL}	V_{ID}	All blocks temporarily unprotected except the 2 outermost blocks
V _{IH} or V _{ID}	V_{ID}	All blocks temporarily unprotected
V _{PPH}	V _{IH} or V _{ID}	All blocks temporarily unprotected

2.9 Reset/block temporary unprotect (RP)

The reset/block temporary unprotect pin can be used to apply a hardware reset to the memory or to temporarily unprotect all blocks that have been protected.

Note that if V_{PP}/\overline{WP} is at V_{IL} , then the two outermost boot blocks will remain protected even if \overline{RP} is at V_{ID} .

A hardware reset is achieved by holding reset/block temporary unprotect Low, V_{IL} , for at least t_{PLPX} . After reset/block temporary unprotect goes High, V_{IH} , the memory will be ready for bus read and bus write operations after t_{PHEL} or t_{RHEL} , whichever occurs last. See Section 2.10: Ready/busy output (RB), Table 17: Reset/block temporary unprotect AC characteristics and Figure 12: Reset/block temporary unprotect AC waveforms, for more details.

Holding \overline{RP} at V_{ID} will temporarily unprotect the protected blocks in the memory. Program and erase operations on all blocks will be possible. The transition from V_{IH} to V_{ID} must be slower than t_{PHPHH} .

2.10 Ready/busy output (RB)

The ready/busy pin is an open-drain output that can be used to identify when the device is performing a program or erase operation. During program or erase operations ready/busy is Low, V_{OL}. Ready/busy is high-impedance during read mode, Auto select mode and erase suspend mode.

After a hardware reset, bus read and bus write operations cannot begin until ready/busy becomes high-impedance. See *Table 17: Reset/block temporary unprotect AC characteristics* and *Figure 12: Reset/block temporary unprotect AC waveforms*, for more details.

The use of an open-drain output allows the ready/busy pins from several memories to be connected to a single pull-up resistor. A Low will then indicate that one, or more, of the memories is busy.

2.11 Byte/word organization select (BYTE)

The byte/word organization select pin is used to switch between the x8 and x16 bus modes of the memory. When byte/word organization select is Low, V_{IL} , the memory is in x8 mode, when it is High, V_{IH} , the memory is in x16 mode.

√ numonyx 13/69

2.12 V_{CC} supply voltage (2.7 V to 3.6 V)

V_{CC} provides the power supply for all operations (read, program and erase).

The command interface is disabled when the V_{CC} supply voltage is less than the lockout voltage, V_{LKO} . This prevents bus write operations from accidentally damaging the data during power-up, power-down and power surges. If the program/erase controller is programming or erasing during this time then the operation aborts and the memory contents being altered will be invalid.

A 0.1 μ F capacitor should be connected between the V_{CC} supply voltage pin and the V_{SS} ground pin to decouple the current surges from the power supply. The PCB track widths must be sufficient to carry the currents required during program and erase operations, I_{CC3}.

2.13 V_{SS} ground

 V_{SS} is the reference for all voltage measurements. The device features two V_{SS} pins which must be both connected to the system ground.

3 Bus operations

There are five standard bus operations that control the device. These are bus read, bus write, output disable, standby and automatic standby. See *Table 4: Bus operations, BYTE* = *VIL* and *Table 5: Bus operations, BYTE* = *VIH*, for a summary. Typically glitches of less than 5 ns on Chip Enable or Write Enable are ignored by the memory and do not affect bus operations.

3.1 Bus read

Bus read operations read from the memory cells, or specific registers in the command interface. A valid bus read operation involves setting the desired address on the address inputs, applying a Low signal, V_{IL} , to Chip Enable and Output Enable and keeping Write Enable High, V_{IH} . The data inputs/outputs will output the value, see *Figure 8: Read mode AC waveforms*, and *Table 14: Read AC characteristics*, for details of when the output becomes valid.

3.2 Bus write

Bus write operations write to the command interface. To speed up the read operation the memory array can be read in page mode where data is internally read and stored in a page buffer. The page has a size of 4 words and is addressed by the address inputs A0-A1.

A valid bus write operation begins by setting the desired address on the address inputs. The address inputs are latched by the command interface on the falling edge of Chip Enable or Write Enable, whichever occurs last. The data inputs/outputs are latched by the command interface on the rising edge of Chip Enable or Write Enable, whichever occurs first. Output Enable must remain High, V_{IH}, during the whole bus write operation. See *Figure 10: Write AC waveforms, write enable controlled, Figure 11: Write AC waveforms, chip enable controlled*, and *Table 15: Write AC characteristics, write enable controlled* and *Table 16: Write AC characteristics, chip enable controlled*, for details of the timing requirements.

3.3 Output disable

The data inputs/outputs are in the high impedance state when Output Enable is High, V_{IH}.

3.4 Standby

When Chip Enable is High, V_{IH} , the memory enters standby mode and the data inputs/outputs pins are placed in the high-impedance state. To reduce the supply current to the standby supply current, I_{CC2} , Chip Enable should be held within $V_{CC} \pm 0.2$ V. For the standby current level see *Table 13: DC characteristics*.

During program or erase operations the memory will continue to use the program/erase supply current, I_{CC3}, for program or erase operations until the operation completes.

3.5 Automatic standby

If CMOS levels ($V_{CC} \pm 0.2 \text{ V}$) are used to drive the bus and the bus is inactive for 300 ns or more the memory enters automatic standby where the internal supply current is reduced to the standby supply current, I_{CC2} . The data inputs/outputs will still output data if a bus read operation is in progress.

3.6 Special bus operations

Additional bus operations can be performed to read the electronic signature and also to apply and remove block protection. These bus operations are intended for use by programming equipment and are not usually used in applications. They require V_{ID} to be applied to some pins.

3.6.1 Electronic signature

The memory has two codes, the manufacturer code and the device code, that can be read to identify the memory. These codes can be read by applying the signals listed in *Table 4:* Bus operations, BYTE = VIL and *Table 5:* Bus operations, BYTE = VIH.

3.6.2 Block protect and chip unprotect

Groups of blocks can be protected against accidental program or erase. The protection groups are shown in *Appendix A: Block addresses*, *Table 21* and *Table 22*. The whole chip can be unprotected to allow the data inside the blocks to be changed.

The V_{PP} /write protect pin can be used to protect the two outermost boot blocks. When V_{PP} /write protect is at V_{IL} the two outermost boot blocks are protected and remain protected regardless of the block protection status or the reset/block temporary unprotect pin status.

Block protect and chip unprotect operations are described in Appendix C: Block protection.

Table 4. Bus operations, $\overline{\text{BYTE}} = V_{\text{IL}}^{(1)}$

Operation		G	w	Address inputs	Data inputs/outputs				
Operation	E	G	VV	DQ15A-1, A0-A21	DQ14-DQ8	DQ7-DQ0			
Bus read	V_{IL}	V_{IL}	V_{IH}	Cell address	Hi-Z	Data output			
Bus write	V _{IL}	V _{IH}	V _{IL}	Command address	Hi-Z	Data input			
Output disable	Х	V_{IH}	V_{IH}	Х	Hi-Z Hi-Z				
Standby	V_{IH}	Χ	Х	Х	Hi-Z	Hi-Z			
Read manufacturer code	V _{IL}	V _{IL}	V _{IH}	A0-A3 = V_{IL} , A6 = V_{IL} , A9 = V_{ID} , Others V_{IL} or V_{IH}	Hi-Z	20h			
Read device code	V _{IL}	V _{IL}	V _{IH}	$A0 = V_{IH}, A1-A3 = V_{IL},$ $A6 = V_{IL}, A9 = V_{ID},$ $Others V_{IL} \text{ or } V_{IH}$	Hi-Z	EDh (M29W064FT) FDh (M29W064FB)			
Read block protection status	V _{IL}	V_{IL}	V _{IH}	A0, A2, A3, A6 = V_{IL} , A1 = V_{IH} , A9 = V_{ID} , A12-A21 = Block address, Others V_{IL} or V_{IH}	Hi-Z	01h (protected) 00h (unprotected)			

^{1.} $X = V_{IL}$ or V_{IH} .

Table 5. Bus operations, $\overline{\text{BYTE}} = V_{\text{IH}}^{(1)}$

Operation	Ē	G	w	Address inputs A0-A21	Data inputs/outputs DQ15A-1, DQ14-DQ0
Bus read	V_{IL}	V_{IL}	V_{IH}	Cell address	Data output
Bus write	V_{IL}	V _{IH}	V_{IL}	Command address	Data input
Output disable	Х	V _{IH}	V_{IH}	X	Hi-Z
Standby	V _{IH}	Х	Х	Х	Hi-Z
Read manufacturer code	V _{IL}	V _{IL}	V _{IH}	A0-A3 = V_{IL} , A6 = V_{IL} , A9 = V_{ID} , others V_{IL} or V_{IH}	0020h
Read device code	V _{IL}	V _{IL}	V _{IH}	$A0 = V_{IH}$, $A1-A3 = V_{IL}$, $A6 = V_{IL}$, $A9 = V_{ID}$, Others V_{IL} or V_{IH}	22EDh (M29W064FT) 22FDh (M29W064FB)
Read block protection status	V _{IL}	V _{IL}	V _{IH}	A0, A2, A3, A6 = V_{IL} , A1 = V_{IH} , A9 = V_{ID} , A12-A21 = Block address, others V_{IL} or V_{IH}	0001h (protected) 0000h (unprotected)

^{1.} $X = V_{IL}$ or V_{IH} .

Numonyx 17/69

4 Command interface

All bus write operations to the memory are interpreted by the command interface. Commands consist of one or more sequential bus write operations. Failure to observe a valid sequence of bus write operations will result in the memory returning to read mode. The long command sequences are imposed to maximize data security.

The address used for the commands changes depending on whether the memory is in 16-bit or 8-bit mode. See either *Table 6*, or *Table 7*, depending on the configuration that is being used, for a summary of the commands.

4.1 Standard commands

4.1.1 Read/Reset command

The Read/Reset command returns the memory to its read mode. It also resets the errors in the status register. Either one or three bus write operations can be used to issue the Read/Reset command.

The Read/Reset command can be issued, between bus write cycles before the start of a program or erase operation, to return the device to read mode. If the Read/Reset command is issued during the timeout of a block erase operation then the memory will take up to 10 μ s to abort. During the abort period no valid data can be read from the memory. The Read/Reset command will not abort an erase operation when issued while in erase suspend.

4.1.2 Auto Select command

The Auto Select command is used to read the manufacturer code, the device code, and the block protection status. Three consecutive bus write operations are required to issue the Auto Select command. Once the Auto Select command is issued the memory remains in auto select mode until a Read/Reset command is issued. Read CFI Query and Read/Reset commands are accepted in auto select mode, all other commands are ignored.

In auto select mode, the manufacturer code and the device code can be read by using a bus read operation with addresses and control signals set as shown in *Table 4: Bus operations*, *BYTE = VIL* and *Table 5: Bus operations*, *BYTE = VIH*, except for A9 that is 'don't care'.

The block protection status of each block can be read using a bus read operation with addresses and control signals set as shown in *Table 4: Bus operations, BYTE = VIL* and *Table 5: Bus operations, BYTE = VIH*, except for A9 that is 'don't care'. If the addressed block is protected then 01h is output on data inputs/outputs DQ0-DQ7, otherwise 00h is output (in 8-bit mode).

4.1.3 Read CFI Query command

The Read CFI Query command is used to read data from the common Flash interface (CFI) memory area. This command is valid when the device is in the read array mode, or when the device is in auto selected mode.

One bus write cycle is required to issue the Read CFI Query command. Once the command is issued subsequent bus read operations read from the common flash interface memory area.

The Read/Reset command must be issued to return the device to the previous mode (the read array mode or auto selected mode). A second Read/Reset command would be needed if the device is to be put in the read array mode from auto selected mode.

See Appendix B: Common flash interface (CFI), Tables 23, 24, 25, 26, 27 and 28 for details on the information contained in the common flash interface (CFI) memory area.

4.1.4 Chip Erase command

The Chip Erase command can be used to erase the entire chip. Six bus write operations are required to issue the Chip Erase command and start the program/erase controller.

If any blocks are protected then these are ignored and all the other blocks are erased. If all of the blocks are protected the chip erase operation appears to start but will terminate within about 100 µs, leaving the data unchanged. No error condition is given when protected blocks are ignored.

During the erase operation the memory will ignore all commands, including the Erase Suspend command. It is not possible to issue any command to abort the operation. Typical chip erase times are given in *Table 8: Program, erase times and program, erase endurance cycles*. All bus read operations during the chip erase operation will output the status register on the data inputs/outputs. See the section on the status register for more details.

After the chip erase operation has completed the memory will return to the read mode, unless an error has occurred. When an error occurs the memory will continue to output the status register. A Read/Reset command must be issued to reset the error condition and return to read mode.

The Chip Erase command sets all of the bits in unprotected blocks of the memory to '1'. All previous data is lost.

4.1.5 Block Erase command

The Block Erase command can be used to erase a list of one or more blocks. Six bus write operations are required to select the first block in the list. Each additional block in the list can be selected by repeating the sixth bus write operation using the address of the additional block. The block erase operation starts the program/erase controller about 50 µs after the last bus write operation. Once the program/erase controller starts it is not possible to select any more blocks. Each additional block must therefore be selected within 50 µs of the last block. The 50 µs timer restarts when an additional block is selected. The status register can be read after the sixth bus write operation. See the status register section for details on how to identify if the program/erase controller has started the block erase operation.

If any selected blocks are protected then these are ignored and all the other selected blocks are erased. If all of the selected blocks are protected the block erase operation appears to start but will terminate within about 100 μ s, leaving the data unchanged. No error condition is given when protected blocks are ignored.

During the block erase operation the memory will ignore all commands except the Erase Suspend command. Typical block erase times are given in *Table 8: Program, erase times and program, erase endurance cycles*. All bus read operations during the block erase operation will output the status register on the data inputs/outputs. See the section on the status register for more details.

After the block erase operation has completed the memory will return to the read mode, unless an error has occurred. When an error occurs the memory will continue to output the status register. A Read/Reset command must be issued to reset the error condition and return to read mode.

The Block Erase command sets all of the bits in the unprotected selected blocks to '1'. All previous data in the selected blocks is lost.

4.1.6 Erase Suspend command

The Erase Suspend command may be used to temporarily suspend a block erase operation and return the memory to read mode. The command requires one bus write operation.

The program/erase controller will suspend within the erase suspend latency time of the Erase Suspend command being issued. Once the program/erase controller has stopped the memory will be set to read mode and the erase will be suspended. If the Erase Suspend command is issued during the period when the memory is waiting for an additional block (before the program/erase controller starts) then the erase is suspended immediately and will start immediately when the Erase Resume command is issued. It is not possible to select any further blocks to erase after the erase resume.

During erase suspend it is possible to read and program cells in blocks that are not being erased; both read and program operations behave as normal on these blocks. If any attempt is made to program in a protected block or in the suspended block then the Program command is ignored and the data remains unchanged. The status register is not read and no error condition is given. Reading from blocks that are being erased will output the status register.

It is also possible to issue the Auto Select, Read CFI Query and Unlock Bypass commands during an erase suspend. The Read/Reset command must be issued to return the device to read array mode before the Resume command will be accepted.

4.1.7 Erase Resume command

The Erase Resume command must be used to restart the program/erase controller after an erase suspend. The device must be in read array mode before the Resume command will be accepted. An erase can be suspended and resumed more than once.

4.1.8 Program Suspend command

The Program Suspend command allows the system to interrupt a program operation so that data can be read from any block. When the Program Suspend command is issued during a program operation, the device suspends the program operation within the program suspend latency time (see *Table 8: Program, erase times and program, erase endurance cycles* for value) and updates the status register bits.

After the program operation has been suspended, the system can read array data from any address. However, data read from program-suspended addresses is not valid.

The Program Suspend command may also be issued during a program operation while an erase is suspended. In this case, data may be read from any addresses not in erase suspend or program suspend.

The system may also issue the Auto Select command sequence when the device is in the program suspend mode. The system can read as many auto select codes as required. When the device exits the auto select mode, the device reverts to the program suspend mode, and is ready for another valid operation. See Auto Select command sequence for more information.

4.1.9 Program Resume command

After the Program Resume command is issued, the device reverts to programming. The controller can determine the status of the program operation using the DQ7 or DQ6 status bits, just as in the standard program operation. See write operation status for more information.

The system must write the Program Resume command, to exit the program suspend mode and to continue the programming operation.

Further issuing of the Resume command is ignored. Another Program Suspend command can be written after the device has resumed programming.

4.1.10 Program command

The Program command can be used to program a value to one address in the memory array at a time. The command requires four bus write operations, the final write operation latches the address and data, and starts the program/erase controller.

Programming can be suspended and then resumed by issuing a Program Suspend command and a Program Resume command, respectively (see Section 4.1.8: Program Suspend command and Section 4.1.9: Program Resume command).

If the address falls in a protected block then the Program command is ignored, the data remains unchanged. The status register is never read and no error condition is given.

During the program operation the memory will ignore all commands. It is not possible to issue any command to abort or pause the operation. Typical program times are given in *Table 8: Program, erase times and program, erase endurance cycles*. Bus read operations during the program operation will output the status register on the data inputs/outputs. See the section on the status register for more details.

After the program operation has completed the memory will return to the read mode, unless an error has occurred. When an error occurs the memory will continue to output the status register. A Read/Reset command must be issued to reset the error condition and return to read mode.

Note that the Program command cannot change a bit set to '0' back to '1'. One of the erase commands must be used to set all the bits in a block or in the whole memory from '0' to '1'.

4.2 Fast program commands

There are four fast program commands available to improve the programming throughput, by writing several adjacent words or bytes in parallel. The Double, Quadruple and Octuple Byte Program commands are available for x8 operations, while the Double, Quadruple Word Program commands are available for x16 operations.

Fast program commands can be suspended and then resumed by issuing a Program Suspend command and a Program Resume command, respectively (see Section 4.1.8: Program Suspend command).

When V_{PPH} is applied to the V_{PP} /write protect pin the memory automatically enters the fast program mode. The user can then choose to issue any of the fast program commands. Care must be taken because applying a V_{PPH} to the V_{PP}/WP pin will temporarily unprotect any protected block.

4.2.1 Double Byte Program command

The Double Byte Program command is used to write a page of two adjacent bytes in parallel. The two bytes must differ only in DQ15A-1. Three bus write cycles are necessary to issue the Double Byte Program command.

- 1. The first bus cycle sets up the Double Byte Program command
- 2. The second bus cycle latches the address and the data of the first byte to be written
- 3. The third bus cycle latches the address and the data of the second byte to be written.

4.2.2 Quadruple Byte Program command

The Quadruple Byte Program command is used to write a page of four adjacent bytes in parallel. The four bytes must differ only for addresses A0, DQ15A-1. Five bus write cycles are necessary to issue the Quadruple Byte Program command.

- 1. The first bus cycle sets up the Quadruple Byte Program command
- 2. The second bus cycle latches the Address and the data of the first byte to be written
- 3. The third bus cycle latches the address and the data of the second byte to be written
- 4. The fourth bus cycle latches the address and the data of the third byte to be written
- The fifth bus cycle latches the address and the data of the fourth byte to be written and starts the program/erase controller.

4.2.3 Octuple Byte Program command

This is used to write eight adjacent bytes, in x 8 mode, simultaneously. The addresses of the eight bytes must differ only in A1, A0 and DQ15A-1.

Nine bus write cycles are necessary to issue the command:

- 1. The first bus cycle sets up the command
- 2. The second bus cycle latches the address and the data of the first byte to be written
- 3. The third bus cycle latches the address and the data of the second byte to be written
- 4. The fourth bus cycle latches the address and the data of the third byte to be written
- 5. The fifth bus cycle latches the address and the data of the fourth byte to be written
- 6. The sixth bus cycle latches the address and the data of the fifth byte to be written
- 7. The seventh bus cycle latches the address and the data of the sixth byte to be written
- 8. The eighth bus cycle latches the address and the data of the seventh byte to be written.
- 9. The ninth bus cycle latches the address and the data of the eighth byte to be written and starts the program/erase controller.

4.2.4 Double Word Program command

The Double Word Program command is used to write a page of two adjacent words in parallel. The two words must differ only for the address A0.

Three bus write cycles are necessary to issue the Double Word Program command:

- The first bus cycle sets up the Quadruple Word Program command.
- The second bus cycle latches the address and the data of the first word to be written
- The third bus cycle latches the address and the data of the second word to be written and starts the program/erase controller.

After the program operation has completed the memory will return to the read mode, unless an error has occurred. When an error occurs bus read operations will continue to output the status register. A Read/Reset command must be issued to reset the error condition and return to read mode.

Note that the fast program commands cannot change a bit set to '0' back to '1'. One of the erase commands must be used to set all the bits in a block or in the whole memory from '0' to '1'.

Typical program times are given in *Table 8: Program*, erase times and program, erase endurance cycles.

4.2.5 Quadruple Word Program command

This is used to write a page of four adjacent words (or 8 adjacent bytes), in x16 mode, simultaneously. The addresses of the four words must differ only in A1 and A0.

Five bus write cycles are necessary to issue the command:

- The first bus cycle sets up the command
- The second bus cycle latches the address and the data of the first word to be written
- The third bus cycle latches the address and the data of the second word to be written
- The fourth bus cycle latches the address and the data of the third word to be written
- The fifth bus cycle latches the address and the data of the fourth word to be written and starts the program/erase controller.

4.2.6 Unlock Bypass command

The Unlock Bypass command is used in conjunction with the Unlock Bypass Program command to program the memory faster than with the standard program commands. When the cycle time to the device is long, considerable time saving can be made by using these commands. Three bus write operations are required to issue the Unlock Bypass command.

Once the Unlock Bypass command has been issued the memory will only accept the Unlock Bypass Program command and the Unlock Bypass Reset command. The memory can be read as if in read mode.

When V_{PP} is applied to the V_{PP} /write protect pin the memory automatically enters the unlock bypass mode and the Unlock Bypass Program command can be issued immediately.

4.2.7 Unlock Bypass Program command

The Unlock Bypass command is used in conjunction with the Unlock Bypass Program command to program the memory. When the cycle time to the device is long, considerable time saving can be made by using these commands. Three bus write operations are required to issue the Unlock Bypass command.

Once the Unlock Bypass command has been issued the memory will only accept the Unlock Bypass Program command and the Unlock Bypass Reset command. The memory can be read as if in read mode.

The memory offers accelerated program operations through the V_{PP} /write protect pin. When the system asserts V_{PP} on the V_{PP} /write protect pin, the memory automatically enters the unlock bypass mode. The system may then write the two-cycle unlock bypass program command sequence. The memory uses the higher voltage on the V_{PP} /write protect pin, to accelerate the unlock bypass program operation.

Never raise V_{PP} /write protect to V_{PP} from any mode except read mode, otherwise the memory may be left in an indeterminate state.

4.2.8 Unlock Bypass Reset command

The Unlock Bypass Reset command can be used to return to read/reset mode from Unlock bypass mode. Two bus write operations are required to issue the Unlock Bypass Reset command. Read/Reset command does not exit from unlock bypass mode.

4.3 Block Protection commands

4.3.1 Block Protect and Chip Unprotect commands

Groups of blocks can be protected against accidental program or erase. The protection groups are shown in *Appendix A: Block addresses*, *Table 21: Top boot block addresses*, *M29W064FT* and *Table 22: Bottom boot block addresses*, *M29W064FB*. The whole chip can be unprotected to allow the data inside the blocks to be changed.

Block protect and chip unprotect operations are described in *Appendix C: Block protection*.

Table 6. Commands, 16-bit mode, $\overline{\text{BYTE}} = V_{\text{IH}}^{(1)}$

Command						Bus	write o	perati	ons				
		1st		2nd		3rd		4th		5th		6th	
		Addr	Data	Addr	Data	Addr	Data	Addr	Data	Addr	Data	Addr	Data
Read/Reset	1	Х	F0										
Read/Reset	3	555	AA	2AA	55	Х	F0						
Auto Select	3	555	AA	2AA	55	555	90						
Program	4	555	AA	2AA	55	555	A0	PA	PD				
Double Word Program	3	555	50	PA0	PD0	PA1	PD1						
Quadruple Word Program	5	555	56	PA0	PD0	PA1	PD1	PA2	PD2	PA3	PD3		
Unlock Bypass	3	555	AA	2AA	55	555	20						
Unlock Bypass Program	2	Х	A0	PA	PD								
Unlock Bypass Reset	2	Х	90	Х	00								
Chip Erase	6	555	AA	2AA	55	555	80	555	AA	2AA	55	555	10
Block Erase	6+	555	AA	2AA	55	555	80	555	AA	2AA	55	ВА	30
Program/Erase Suspend	1	Х	В0										
Program/Erase Resume	1	Х	30										
Read CFI Query	1	55	98										

X don't care, PA program address, PD program data, BA any address in the block. All values in the table are in hexadecimal. The command interface only uses A_1, A0-A10 and DQ0-DQ7 to verify the commands; A11-A20, DQ8-DQ14 and DQ15 are don't care. DQ15A-1 is A-1 when BYTE is V_{IL} or DQ15 when BYTE is V_{IH}.

Table 7. Commands, 8-bit mode, $\overline{\text{BYTE}} = V_{\text{IL}}$

	_							В	us wi	ite o	perat	ions ⁽	1)							
Command	ngth	ength	1st		2nd		3rd		4th		5th		6th		7th		8th		9	th
	ב		Data	Add	Data	Add	Data	Add	Data	Add	Data	Add	Data	Add	Data	Add	Data	Add	Data	
Read/Reset	1	X AAA	F0 AA	555	55	Х	F0													
Auto Select	3	AAA	AA	555	55	AAA	90													
Program	4	AAA	AA	555	55	AAA	Α0	PA	PD											
Double Byte Program	3	AAA	50	PA0	PD0	PA1	PD1													
Quadruple Byte Program	5	AAA	56	PA0	PD0	PA1	PD1	PA2	PD2	PA3	PD3									
Octuple Byte Program	9	AAA	8B	PA0	PD0	PA1	PD1	PA2	PD2	PA3	PD3	PA4	PD4	PA5	PD5	PA6	PD6	PA7	PD7	
Unlock Bypass	3	AAA	AA	555	55	AAA	20													
Unlock Bypass Program	2	Х	A0	PA	PD															
Unlock Bypass Reset	2	Х	90	Х	00															
Chip Erase	6	AAA	AA	555	55	AAA	80	AAA	AA	555	55	AAA	10							
Block Erase	6+	AAA	AA	555	55	AAA	80	AAA	AA	555	55	ВА	30							
Program/Erase Suspend	1	Х	В0																	
Program/Erase Resume	1	Х	30																	
Read CFI Query	1	AA	98																	

X don't care, PA program address, PD program data, BA any address in the block. All values in the table are in hexadecimal. The command interface only uses A–1, A0-A10 and DQ0-DQ7 to verify the commands; A11-A20, DQ8-DQ14 and DQ15 are don't care. DQ15A–1 is A–1 when BYTE is V_{IL} or DQ15 when BYTE is V_{IH}.

Table 8. Program, erase times and program, erase endurance cycles

Parameter	Min	Typ ⁽¹⁾⁽²⁾	Max ⁽²⁾	Unit
Chip Erase		80	400 ⁽³⁾	S
Block Erase (64 Kbytes)		0.8	6 ⁽⁴⁾	S
Erase Suspend latency time			50 ⁽⁴⁾	μs
Program (byte or word)		10	200 ⁽³⁾	μs
Double Byte		10	200 ⁽³⁾	μs
Double Word /Quadruple Byte Program		10	200 ⁽³⁾	μs
Quadruple Word / Octuple Byte Program		10	200 ⁽³⁾	μs
Chip Program (byte by byte)		80	400 ⁽³⁾	S
Chip Program (word by word)		40	200 ⁽³⁾	S
Chip Program (Double Word/Quadruple Byte Program)		20	100 ⁽³⁾	S
Chip Program (Quadruple Word/Octuple Byte Program)		10	50 ⁽³⁾	S
Program Suspend latency time			4	μs
Program/Erase cycles (per block)	100,000			cycles
Data retention	20			years

^{1.} Typical values measured at room temperature and nominal voltages.

^{2.} Sampled, but not 100% tested.

 $^{3. \}quad \text{Maximum value measured at worst case conditions for both temperature and V_{CC} after 100,000 program/erase cycles.}$

^{4.} Maximum value measured at worst case conditions for both temperature and $V_{\mbox{\footnotesize{CC}}}.$

5 Status register

Bus read operations from any address always read the status register during program and erase operations. It is also read during erase suspend when an address within a block being erased is accessed.

The bits in the status register are summarized in *Table 9: Status register bits*.

5.1 Data polling bit (DQ7)

The data polling bit can be used to identify whether the program/erase controller has successfully completed its operation or if it has responded to an erase suspend. The data polling bit is output on DQ7 when the status register is read.

During program operations the data polling bit outputs the complement of the bit being programmed to DQ7. After successful completion of the program operation the memory returns to read mode and bus read operations from the address just programmed output DQ7, not its complement.

During erase operations the data polling bit outputs '0', the complement of the erased state of DQ7. After successful completion of the erase operation the memory returns to read mode.

In erase suspend mode the data polling bit will output a '1' during a bus read operation within a block being erased. The data polling bit will change from a '0' to a '1' when the program/erase controller has suspended the erase operation.

Figure 4: Data polling flowchart, gives an example of how to use the data polling bit. A valid address is the address being programmed or an address within the block being erased.

5.2 Toggle bit (DQ6)

The toggle bit can be used to identify whether the program/erase controller has successfully completed its operation or if it has responded to an erase suspend. The toggle bit is output on DQ6 when the status register is read.

During program and erase operations the toggle bit changes from '0' to '1' to '0', etc., with successive bus read operations at any address. After successful completion of the operation the memory returns to read mode.

During erase suspend mode the toggle bit will output when addressing a cell within a block being erased. The toggle bit will stop toggling when the program/erase controller has suspended the erase operation.

Figure 5: Data toggle flowchart, gives an example of how to use the toggle bit.

5.3 Error bit (DQ5)

The error bit can be used to identify errors detected by the program/erase controller. The error bit is set to '1' when a program, block erase or chip erase operation fails to write the correct data to the memory. If the error bit is set a Read/Reset command must be issued before other commands are issued. The error bit is output on DQ5 when the status register is read.

Note that the Program command cannot change a bit set to '0' back to '1' and attempting to do so will set DQ5 to '1'. A bus read operation to that address will show the bit is still '0'. One of the erase commands must be used to set all the bits in a block or in the whole memory from '0' to '1'.

5.4 Erase timer bit (DQ3)

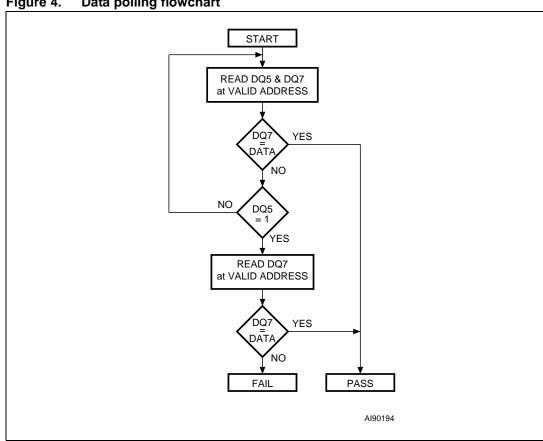
The erase timer bit can be used to identify the start of program/erase controller operation during a Block Erase command. Once the program/erase controller starts erasing the erase timer bit is set to '1'. Before the program/erase controller starts the erase timer bit is set to '0' and additional blocks to be erased may be written to the command interface. The erase timer bit is output on DQ3 when the status register is read.

5.5 Alternative toggle bit (DQ2)

The alternative toggle bit can be used to monitor the program/erase controller during erase operations. The alternative toggle bit is output on DQ2 when the status register is read.

During chip erase and block erase operations the toggle bit changes from '0' to '1' to '0', etc., with successive bus read operations from addresses within the blocks being erased. A protected block is treated the same as a block not being erased. Once the operation completes the memory returns to read mode.

During erase suspend the alternative toggle bit changes from '0' to '1' to '0', etc. with successive bus read operations from addresses within the blocks being erased. Bus read operations to addresses within blocks not being erased will output the memory cell data as if in read mode.


After an erase operation that causes the error bit to be set the alternative toggle bit can be used to identify which block or blocks have caused the error. The alternative toggle bit changes from '0' to '1' to '0', etc. with successive bus read operations from addresses within blocks that have not erased correctly. The alternative toggle bit does not change if the addressed block has erased correctly.

Status register bits⁽¹⁾ Table 9.

Operation	Address	DQ7	DQ6	DQ5	DQ3	DQ2	RB
Program	Any address	DQ7	Toggle	0	_	-	0
Program during erase suspend	Any address	DQ7	Toggle	0	-	_	0
Program error	Any address	DQ7	Toggle	1	-	_	Hi-Z
Chip erase	Any address	0	Toggle	0	1	Toggle	0
Block erase before timeout	Erasing block	0	Toggle	0	0	Toggle	0
	Non-erasing block	0	Toggle	0	0	No Toggle	0
Block erase	Erasing block	0	Toggle	0	1	Toggle	0
DIOCK erase	Non-erasing block	0	Toggle	0	1	No Toggle	0
Erase suspend	Erasing block	1	No Toggle	0	-	Toggle	Hi-Z
Erase suspend	Non-erasing block	Data read as normal			Hi-Z		
Erase error	Good block address	0	Toggle	1	1	No Toggle	Hi-Z
Liase elloi	Faulty block address	0	Toggle	1	1	Toggle	Hi-Z

^{1.} Unspecified data bits should be ignored.

Figure 4. **Data polling flowchart**

START READ DQ6 READ DQ5 & DQ6 DQ6 TOGGLE NO YES NO DQ5 = 1 YES **READ DQ6** TWICE DQ6 TOGGLE NO YES FAIL PASS AI90195B

Figure 5. Data toggle flowchart

6 Maximum ratings

Stressing the device above the rating listed in *Table 10: Absolute maximum ratings* may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied.

Table 10. Absolute maximum ratings

Symbol	Parameter	Min	Max	Unit
T _{BIAS}	Temperature under bias	-50	125	°C
T _{STG}	Storage temperature	-65	150	°C
V _{IO}	Input or output voltage ⁽¹⁾⁽²⁾	-0.6	V _{CC} + 0.6	V
V _{CC}	Supply voltage	-0.6	4	V
V _{ID}	Identification voltage	-0.6	13.5	V
V _{PP} ⁽³⁾	Program voltage	-0.6	13.5	V

- 1. Minimum voltage may undershoot to $-2\ V$ during transition and for less than 20 ns during transitions.
- 2. Maximum voltage may overshoot to V_{CC} +2 V during transition and for less than 20 ns during transitions.
- 3. V_{PP} must not remain at 12 V for more than a total of 80 hrs.

7 DC and AC parameters

This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC characteristic tables that follow are derived from tests performed under the measurement conditions summarized in the relevant tables. Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parameters.

Table 11. Operating and AC measurement conditions

Barranatar	M29W064FT,	Unit	
Parameter	Min	n Max	
V _{CC} supply voltage	2.7	3.6	V
Ambient operating temperature	-40	125	°C
Load capacitance (C _L)	30		pF
Input rise and fall times		10	ns
Input pulse voltages	0 to V _{CC}		V
Input and output timing ref. voltages	V _{CC} /2		V

Figure 6. AC measurement I/O waveform

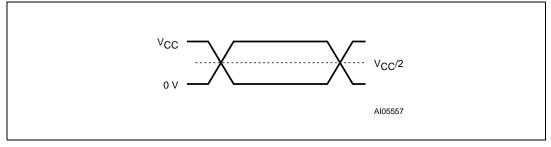


Figure 7. AC measurement load circuit

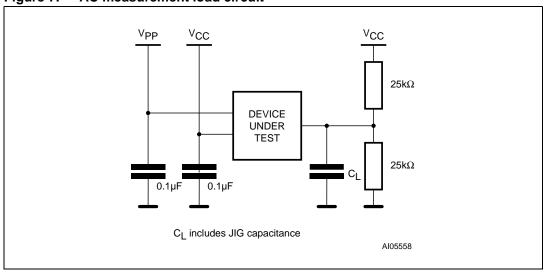


Table 12. Device capacitance

Symbol	Parameter	Test condition	Min	Max	Unit
C _{IN}	Input capacitance	V _{IN} = 0 V		6	pF
C _{OUT}	Output capacitance	V _{OUT} = 0 V		12	pF

^{1.} Sampled only, not 100% tested.

Table 13. DC characteristics

Symbol	Parameter	Test condition		Min	Max	Unit
ILI	Input leakage current	$0 \text{ V} \leq V_{IN} \leq V_{CC}$			±1	μΑ
I _{LO}	Output leakage current	0 V ≤ V _{OL}	$JT \leq V_{CC}$		±1	μA
I _{CC1}	Supply current (read)	$\overline{E} = V_{IL}, \overline{G} = V_{IH},$ f = 6 MHz			10	mA
I _{CC2}	Supply current (standby)	$\overline{E} = V_{CC} \pm 0.2 \text{ V},$ $\overline{RP} = V_{CC} \pm 0.2 \text{ V}$			100	μA
I _{CC3}	Supply current (program/erase)	Program/erase controller active	$V_{PP}/\overline{WP} = V_{IL} \text{ or } V_{IH}$		20	mA
	(program/crase)	controller active	$V_{PP}/\overline{WP} = V_{PP}$		20	mA
V _{IL}	Input low voltage			-0.5	0.8	V
V _{IH}	Input high voltage			0.7V _{CC}	V _{CC} + 0.3	V
V _{PP}	Voltage for V _{PP} / WP program acceleration	V _{CC} = 2.7 V ± 10%		11.5	12.5	٧
I _{PP}	Current for V _{PP} / WP program acceleration	V _{CC} = 2.7 V ± 10%			15	mA
V _{OL}	Output low voltage	I _{OL} = 1.8 mA			0.45	V
V _{OH}	Output high voltage	I _{OH} = -100 μA		V _{CC} -0.4		V
V _{ID}	Identification voltage			11.5	12.5	V
V _{LKO} ⁽¹⁾	Program/erase lockout supply voltage			1.8	2.3	V

^{1.} Sampled only, not 100% tested.

Figure 8. Read mode AC waveforms

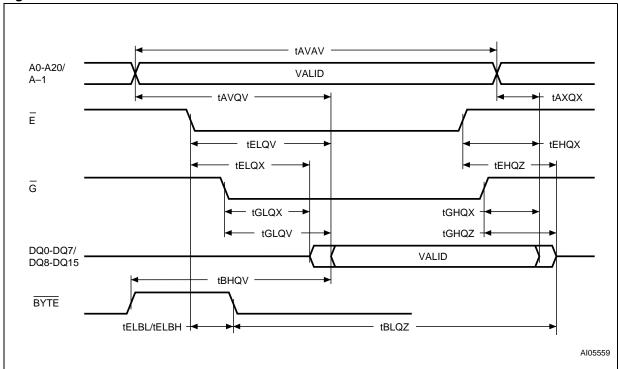


Figure 9. Page read AC waveforms

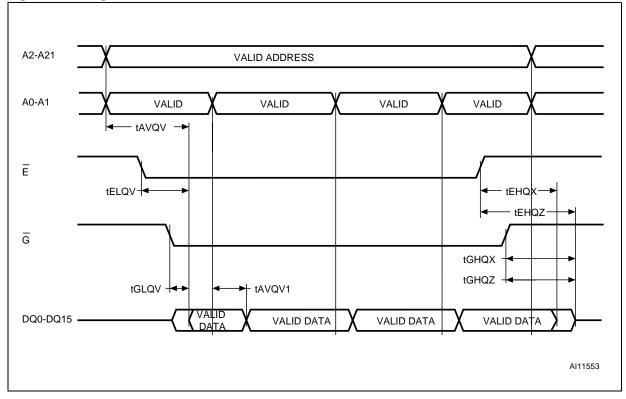


Table 14. Read AC characteristics

Symbol	bol Alt Parameter Test condi		Alt	tion		064FT, 064FB	Unit
					60	70	
t _{AVAV}	t _{RC}	Address Valid to Next Address Valid	$\overline{E} = V_{IL},$ $\overline{G} = V_{IL}$	Min	60	70	ns
t _{AVQV}	t _{ACC}	Address Valid to Output Valid	$\overline{\overline{E}} = V_{IL},$ $\overline{G} = V_{IL}$	Max	60	70	ns
t _{AVQV1}	t _{PAGE}	Address Valid to Output Valid (Page)	$\frac{\overline{E}}{G} = V_{IL}$, Max		25	25	ns
t _{ELQX} ⁽¹⁾	t_{LZ}	Chip Enable Low to Output Transition	G = V _{IL}	Min	0	0	ns
t _{ELQV}	t _{CE}	Chip Enable Low to Output Valid	G = V _{IL}	Max	60	70	ns
t _{GLQX} ⁽¹⁾	t _{OLZ}	Output Enable Low to Output Transition	E = V _{IL}	Min	0	0	ns
t _{GLQV}	t _{OE}	Output Enable Low to Output Valid	E = V _{IL}	Max	25	25	ns
t _{EHQZ} ⁽¹⁾	t _{HZ}	Chip Enable High to Output Hi-Z	G = V _{IL}	Max	25	25	ns
t _{GHQZ} ⁽¹⁾	t _{DF}	Output Enable High to Output Hi-Z	E = V _{IL}	Max	25	25	ns
t _{EHQX} t _{GHQX} t _{AXQX}	t _{ОН}	Chip Enable, Output Enable or Address Transition to Output Transition		Min	0	0	ns
t _{ELBL}	t _{ELFL}	Chip Enable to BYTE Low or High		Max	5	5	ns
t _{BLQZ}	t _{FLQZ}	BYTE Low to Output Hi-Z		Max	25	25	ns
t _{BHQV}	t _{FHQV}	BYTE High to Output Valid		Max	30	30	ns

^{1.} Sampled only, not 100% tested.

tAVAV A0-A20/ VALID A-1 tWLAX tAVWLtWHEH Ē tELWL tWHGL G tGHWL tWLWH - $\overline{\mathsf{w}}$ tWHWL tDVWH tWHDX DQ0-DQ7/ VALID DQ8-DQ15 V_{CC} tVCHEL -RB tWHRL 🕂 AI05560

Figure 10. Write AC waveforms, write enable controlled

Table 15. Write AC characteristics, write enable controlled

Symbol	Alt	Parameter			M29W064FT, M29W064FB		
				60	70		
t _{AVAV}	t _{WC}	Address Valid to Next Address Valid	Min	60	70	ns	
t _{ELWL}	t _{CS}	Chip Enable Low to Write Enable Low	Min	0	0	ns	
t _{WLWH}	t _{WP}	Write Enable Low to Write Enable High	Min	45	45	ns	
t _{DVWH}	t _{DS}	Input Valid to Write Enable High	Min	45	45	ns	
t _{WHDX}	t _{DH}	Write Enable High to Input Transition	Min	0	0	ns	
t _{WHEH}	t _{CH}	Write Enable High to Chip Enable High	Min	0	0	ns	
t _{WHWL}	t _{WPH}	Write Enable High to Write Enable Low	Min	30	30	ns	
t _{AVWL}	t _{AS}	Address Valid to Write Enable Low	Min	0	0	ns	
t _{WLAX}	t _{AH}	Write Enable Low to Address Transition	Min	45	45	ns	
t _{GHWL}		Output Enable High to Write Enable Low	Min	0	0	ns	
t _{WHGL}	t _{OEH}	Write Enable High to Output Enable Low	Min	0	0	ns	
t _{WHRL} ⁽¹⁾	t _{BUSY}	Program/Erase Valid to RB Low	Max	30	30	ns	
t _{VCHEL}	t _{VCS}	V _{CC} High to Chip Enable Low	Min	50	50	μs	

^{1.} Sampled only, not 100% tested.

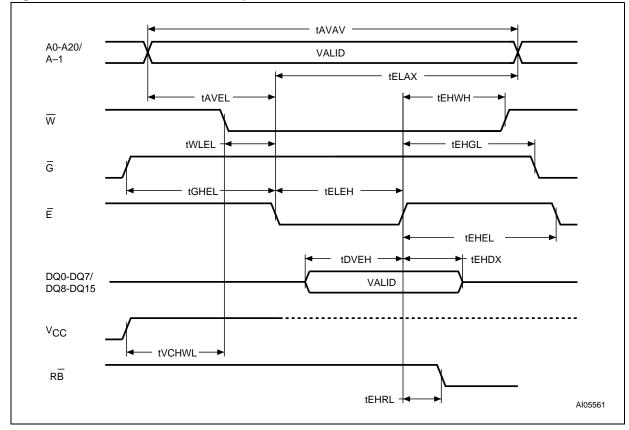


Figure 11. Write AC waveforms, chip enable controlled

Table 16. Write AC characteristics, chip enable controlled

Cumbal	Alt	Devementer	M29W064FT,	M29W064FB	I Imit	
Symbol	ymbol Alt Parameter -				70	Unit
t _{AVAV}	t_{WC}	Address Valid to Next Address Valid	Min	60	70	ns
t _{WLEL}	t _{WS}	Write Enable Low to Chip Enable Low	Min	0	0	ns
t _{ELEH}	t _{CP}	Chip Enable Low to Chip Enable High	Min	45	45	ns
t _{DVEH}	t _{DS}	Input Valid to Chip Enable High	Min	45	45	ns
t _{EHDX}	t _{DH}	Chip Enable High to Input Transition	Min	0	0	ns
t _{EHWH}	t _{WH}	Chip Enable High to Write Enable High	Min	0	0	ns
t _{EHEL}	t _{CPH}	Chip Enable High to Chip Enable Low	Min	30	30	ns
t _{AVEL}	t _{AS}	Address Valid to Chip Enable Low	Min	0	0	ns
t _{ELAX}	t _{AH}	Chip Enable Low to Address Transition	Min	45	45	ns
t _{GHEL}		Output Enable High Chip Enable Low	Min	0	0	ns
t _{EHGL}	t _{OEH}	Chip Enable High to Output Enable Low	Min	0	0	ns
t _{EHRL} ⁽¹⁾	t _{BUSY}	Program/Erase Valid to RB Low	Max	30	30	ns
t _{VCHWL}	t _{VCS}	V _{CC} High to Write Enable Low	Min	50	50	μs

^{1.} Sampled only, not 100% tested.

Figure 12. Reset/block temporary unprotect AC waveforms

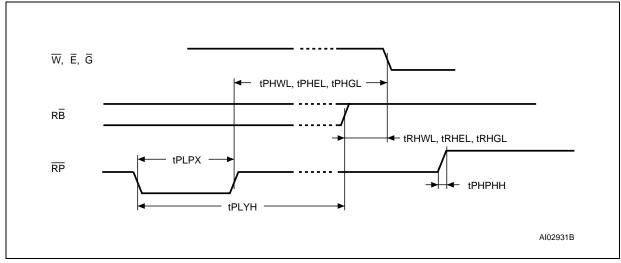


Figure 13. Accelerated program timing waveforms

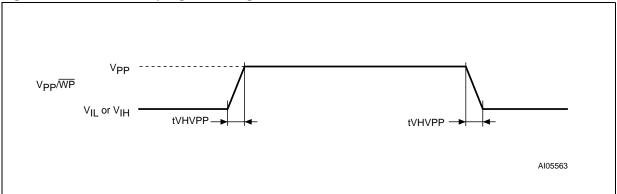


Table 17. Reset/block temporary unprotect AC characteristics

Symbol	Alt	Parameter	M29W064FT, M29W064FB	Unit	
t _{PHWL} ⁽¹⁾ t _{PHEL} t _{PHGL} ⁽¹⁾	t _{RH}	RP High to Write Enable Low, Chip Enable Low, Output Enable Low	Min	50	ns
t _{RHWL} ⁽¹⁾ t _{RHEL} ⁽¹⁾ t _{RHGL} ⁽¹⁾	t _{RB}	RB High to Write Enable Low, Chip Enable Low, Output Enable Low	Min	0	ns
t _{PLPX}	t _{RP}	RP pulse width	Min	500	ns
t _{PLYH}	t _{READY}	RP Low to read mode	Max	50	μs
t _{PHPHH} ⁽¹⁾	t _{VIDR}	RP rise time to V _{ID}	Min	500	ns
t _{VHVPP} ⁽¹⁾		V _{PP} rise and fall time	Min	250	ns

^{1.} Sampled only, not 100% tested.

8 Package mechanical

To meet environmental requirements, Numonyx offers these devices in RoHS compliant packages. RoHS packages are lead-free. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label.

DI E1 E1 CP TSOP-G

Figure 14. TSOP48 – 48 lead plastic thin small outline, 12 x 20 mm, top view package outline

1. Drawing is not to scale.

Table 18. TSOP48 – 48 lead plastic thin small outline, 12 x 20 mm, package mechanical data

meenamear data						
Cumbal		millimeters				
Symbol	Тур	Min	Max	Тур	Min	Max
Α			1.20			0.047
A1	0.10	0.05	0.15	0.004	0.002	0.006
A2	1.00	0.95	1.05	0.039	0.037	0.041
В	0.22	0.17	0.27	0.009	0.007	0.011
С		0.10	0.21		0.004	0.008
CP			0.10			0.004
D1	12.00	11.90	12.10	0.472	0.468	0.476
E	20.00	19.80	20.20	0.787	0.779	0.795
E1	18.40	18.30	18.50	0.724	0.720	0.728
е	0.50	-	-	0.020	-	-
L	0.60	0.50	0.70	0.024	0.020	0.028
L1	0.80			0.031		
α	3°	0°	5°	3°	0°	5°

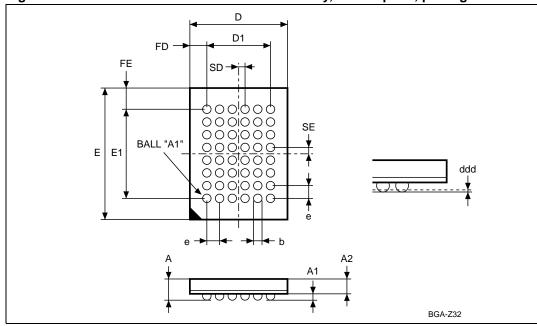


Figure 15. TFBGA48 6x8mm - 6x8 active ball array, 0.8mm pitch, package outline

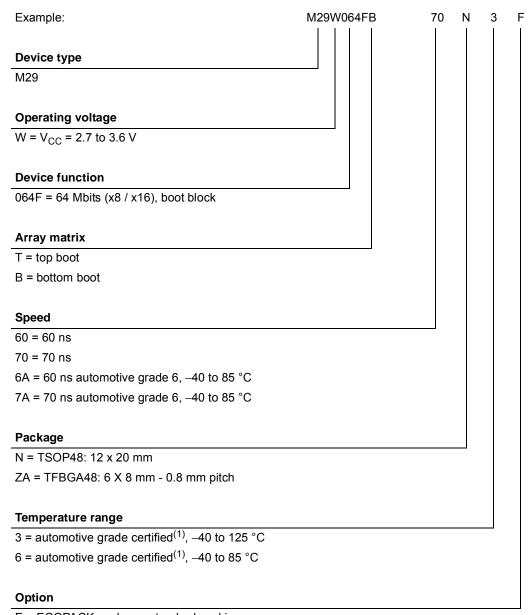

1. Drawing is not to scale.

Table 19. TFBGA48 6x8mm - 6x8 active ball array, 0.8mm pitch, package mechanical data

moonamour data									
Cumbal		millimeters inches			millimeters		inches		
Symbol	Тур	Min	Max	Тур	Min	Max			
Α			1.200			0.0472			
A1		0.260			0.0102				
A2			0.900			0.0354			
b		0.350	0.450		0.0138	0.0177			
D	6.000	5.900	6.100	0.2362	0.2323	0.2402			
D1	4.000	-	_	0.1575	_	-			
ddd			0.100			0.0039			
E	8.000	7.900	8.100	0.3150	0.3110	0.3189			
E1	5.600	-	_	0.2205	_	-			
е	0.800	-	-	0.0315	-	-			
FD	1.000	-	_	0.0394	_	-			
FE	1.200	-	-	0.0472	-	-			
SD	0.400	-	-	0.0157	-	_			
SE	0.400	-	-	0.0157	-	-			

9 Ordering information

Table 20. Ordering information scheme

E = ECOPACK package, standard packing

F = ECOPACK package, tape & reel packing

Note:

Devices are shipped from the factory with the memory content bits erased to '1'. For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest Numonyx sales office.

Qualified and characterized according to AEC Q100 & Q003 or equivalent, advanced screening according to AEC Q001 & Q002 or equivalent.

Appendix A Block addresses

Table 21. Top boot block addresses, M29W064FT

Block	Kbytes/Kwords	Protection block group	(x8)	(x16)
0	64/32		000000h-00FFFFh	000000h-007FFFh
1	64/32	Protection group	010000h-01FFFFh	008000h-00FFFFh
2	64/32		020000h-02FFFFh	010000h-017FFFh
3	64/32		030000h-03FFFFh	018000h-01FFFFh
4	64/32		040000h-04FFFFh	020000h-027FFFh
5	64/32	Drotoction group	050000h-05FFFFh	028000h-02FFFFh
6	64/32	Protection group	060000h-06FFFFh	030000h-037FFFh
7	64/32		070000h-07FFFFh	038000h-03FFFFh
8	64/32		080000h-08FFFFh	040000h-047FFFh
9	64/32	Drotoction group	090000h-09FFFFh	048000h-04FFFFh
10	64/32	Protection group	0A0000h-0AFFFFh	050000h-057FFFh
11	64/32		0B0000h-0BFFFFh	058000h-05FFFFh
12	64/32		0C0000h-0CFFFFh	060000h-067FFFh
13	64/32	Drotootion group	0D0000h-0DFFFFh	068000h-06FFFFh
14	64/32	Protection group	0E0000h-0EFFFFh	070000h-077FFFh
15	64/32		0F0000h-0FFFFFh	078000h-07FFFFh
16	64/32		100000h-10FFFFh	080000h-087FFFh
17	64/32	Drotoction group	110000h-11FFFFh	088000h-08FFFFh
18	64/32	Protection group	120000h-12FFFFh	090000h-097FFFh
19	64/32		130000h-13FFFFh	098000h-09FFFFh
20	64/32		140000h-14FFFFh	0A0000h-0A7FFFh
21	64/32	Drotoction group	150000h-15FFFFh	0A8000h-0AFFFFh
22	64/32	Protection group	160000h-16FFFFh	0B0000h-0B7FFFh
23	64/32		170000h-17FFFFh	0B8000h-0BFFFFh
24	64/32		180000h-18FFFFh	0C0000h-0C7FFh
25	64/32	Protection group	190000h-19FFFFh	0C8000h-0CFFFFh
26	64/32	Protection group	1A0000h-1AFFFFh	0D0000h-0D7FFFh
27	64/32		1B0000h-1BFFFFh	0D8000h-0DFFFFh
28	64/32		1C0000h-1CFFFFh	0E0000h-0E7FFh
29	64/32	Protection group	1D0000h-1DFFFFh	0E8000h-0EFFFFh
30	64/32	Protection group	1E0000h-1EFFFFh	0F0000h-0F7FFh
31	64/32		1F0000h-1FFFFFh	0F8000h-0FFFFFh

Table 21. Top boot block addresses, M29W064FT (continued)

Block	Kbytes/Kwords	Protection block group	(x8)	(x16)
32	64/32		200000h-20FFFFh	100000h-107FFFh
33	64/32	Donto otico consum	210000h-21FFFFh	108000h-10FFFFh
34	64/32	Protection group	220000h-22FFFFh	110000h-117FFFh
35	64/32		230000h-23FFFFh	118000h-11FFFFh
36	64/32		240000h-24FFFFh	120000h-127FFFh
37	64/32	Doctorii o o oo oo	250000h-25FFFFh	128000h-12FFFFh
38	64/32	Protection group	260000h-26FFFFh	130000h-137FFFh
39	64/32		270000h-27FFFh	138000h-13FFFFh
40	64/32		280000h-28FFFFh	140000h-147FFFh
41	64/32	Duesto etiem energy	290000h-29FFFFh	148000h-14FFFFh
42	64/32	Protection group	2A0000h-2AFFFFh	150000h-157FFFh
43	64/32		2B0000h-2BFFFFh	158000h-15FFFFh
44	64/32		2C0000h-2CFFFFh	160000h-167FFFh
45	64/32	Drotaction group	2D0000h-2DFFFFh	168000h-16FFFFh
46	64/32	Protection group	2E0000h-2EFFFFh	170000h-177FFFh
47	64/32		2F0000h-2FFFFFh	178000h–17FFFFh
48	64/32		300000h-30FFFFh	180000h-187FFFh
49	64/32	Duesto etiem energy	310000h-31FFFFh	188000h-18FFFFh
50	64/32	Protection group	320000h-32FFFFh	190000h-197FFFh
51	64/32		330000h-33FFFFh	198000h-19FFFFh
52	64/32		340000h-34FFFFh	1A0000h-1A7FFFh
53	64/32	Droto etion group	350000h-35FFFFh	1A8000h-1AFFFFh
54	64/32	Protection group	360000h-36FFFFh	1B0000h-1B7FFFh
55	64/32		370000h-37FFFFh	1B8000h-1BFFFFh
56	64/32		380000h-38FFFFh	1C0000h-1C7FFFh
57	64/32	Ducks stiers areas	390000h-39FFFFh	1C8000h-1CFFFFh
58	64/32	Protection group	3A0000h-3AFFFFh	1D0000h-1D7FFFh
59	64/32		3B0000h-3BFFFFh	1D8000h-1DFFFFh
60	64/32		3C0000h-3CFFFFh	1E0000h-1E7FFFh
61	64/32	Drotootic	3D0000h-3DFFFFh	1E8000h-1EFFFFh
62	64/32	Protection group	3E0000h-3EFFFFh	1F0000h-1F7FFFh
63	64/32		3F0000h-3FFFFFh	1F8000h-1FFFFFh

Table 21. Top boot block addresses, M29W064FT (continued)

Block	Kbytes/Kwords	Protection block group	(x8)	(x16)
64	64/32		400000h-40FFFFh	200000h-207FFFh
65	64/32	Dratastica grava	410000h–41FFFFh	208000h-20FFFFh
66	64/32	Protection group	420000h-42FFFFh	210000h-217FFFh
67	64/32		430000h-43FFFFh	218000h-21FFFFh
68	64/32		440000h-44FFFFh	220000h-227FFFh
69	64/32	Droto otion grave	450000h-45FFFFh	228000h-22FFFFh
70	64/32	Protection group	460000h-46FFFFh	230000h-237FFFh
71	64/32		470000h–47FFFFh	238000h-23FFFFh
72	64/32		480000h-48FFFFh	240000h-247FFFh
73	64/32	Droto etion enous	490000h-49FFFFh	248000h-24FFFFh
74	64/32	Protection group	4A0000h–4AFFFFh	250000h-257FFFh
75	64/32		4B0000h–4BFFFFh	258000h-25FFFFh
76	64/32		4C0000h-4CFFFFh	260000h-267FFFh
77	64/32	Droto etion enous	4D0000h–4DFFFFh	268000h-26FFFFh
78	64/32	Protection group	4E0000h-4EFFFFh	270000h-277FFFh
79	64/32		4F0000h–4FFFFFh	278000h–27FFFFh
80	64/32		500000h-50FFFFh	280000h-287FFFh
81	64/32	Droto etion enous	510000h-51FFFFh	288000h-28FFFFh
82	64/32	Protection group	520000h-52FFFFh	290000h-297FFh
83	64/32		530000h-53FFFFh	298000h-29FFFFh
84	64/32		540000h-54FFFFh	2A0000h-2A7FFFh
85	64/32	Droto etion group	550000h-55FFFFh	2A8000h–2AFFFFh
86	64/32	Protection group	560000h-56FFFFh	2B0000h-2B7FFFh
87	64/32		570000h-57FFFFh	2B8000h–2BFFFFh
88	64/32		580000h-58FFFFh	2C0000h-2C7FFFh
89	64/32	Droto etion group	590000h-59FFFFh	2C8000h-2CFFFFh
90	64/32	Protection group	5A0000h-5AFFFFh	2D0000h-2D7FFFh
91	64/32		5B0000h-5BFFFFh	2D8000h–2DFFFFh
92	64/32		5C0000h-5CFFFFh	2E0000h-2E7FFFh
93	64/32	Drotootics group	5D0000h-5DFFFFh	2E8000h-2EFFFFh
94	64/32	Protection group	5E0000h-5EFFFFh	2F0000h-2F7FFFh
95	64/32		5F0000h-5FFFFFh	2F8000h-2FFFFFh

Table 21. Top boot block addresses, M29W064FT (continued)

Block	Kbytes/Kwords	Protection block group	(x8)	(x16)
96	64/32	Drotootion group	600000h-60FFFFh	300000h-307FFFh
97	64/32		610000h-61FFFFh	308000h-30FFFFh
98	64/32	Protection group	620000h-62FFFFh	310000h-317FFFh
99	64/32		630000h-63FFFFh	318000h-31FFFFh
100	64/32		640000h-64FFFFh	320000h-327FFFh
101	64/32	Doctortica annous	650000h-65FFFFh	328000h-32FFFFh
102	64/32	Protection group	660000h-66FFFFh	330000h-337FFFh
103	64/32		670000h-67FFFh	338000h-33FFFFh
104	64/32		680000h-68FFFFh	340000h-347FFFh
105	64/32	D (()	690000h-69FFFFh	348000h-34FFFFh
106	64/32	Protection group	6A0000h-6AFFFFh	350000h-357FFFh
107	64/32		6B0000h-6BFFFFh	358000h-35FFFFh
108	64/32		6C0000h-6CFFFFh	360000h-367FFFh
109	64/32	Droto otio v svojivo	6D0000h-6DFFFFh	368000h-36FFFFh
110	64/32	Protection group	6E0000h-6EFFFFh	370000h-377FFFh
111	64/32		6F0000h-6FFFFFh	378000h-37FFFFh
112	64/32		700000h-70FFFFh	380000h-387FFFh
113	64/32	Doctortica annous	710000h–71FFFFh	388000h-38FFFFh
114	64/32	Protection group	720000h-72FFFFh	390000h-397FFFh
115	64/32		730000h-73FFFFh	398000h-39FFFFh
116	64/32		740000h-74FFFFh	3A0000h-3A7FFFh
117	64/32	Droto otio v svojivo	750000h-75FFFFh	3A8000h-3AFFFFh
118	64/32	Protection group	760000h-76FFFFh	3B0000h-3B7FFFh
119	64/32		770000h-77FFFFh	3B8000h-3BFFFFh
120	64/32		780000h-78FFFFh	3C0000h-3C7FFFh
121	64/32	Drete etien energy	790000h-79FFFFh	3C8000h-3CFFFFh
122	64/32	Protection group	7A0000h–7AFFFFh	3D0000h-3D7FFFh
123	64/32		7B0000h–7BFFFFh	3D8000h-3DFFFFh

Table 21. Top boot block addresses, M29W064FT (continued)

Block	Kbytes/Kwords	Protection block group	(x8)	(x16)
124	64/32		7C0000h-7CFFFFh	3E0000h-3E7FFh
125	64/32		7D0000h-7DFFFFh	3E8000h-3EFFFFh
126	64/32		7E0000h-7EFFFFh	3F0000h-3F7FFFh
127	8/4		7F0000h-7F1FFFh	3F8000h-3F8FFFh
128	8/4		7F2000h-7F3FFFh	3F9000h-3F9FFFh
129	8/4	Protection group	7F4000h-7F5FFFh	3FA000h-3FAFFFh
130	8/4		7F6000h-7F7FFFh	3FB000h-3FBFFFh
131	8/4		7F8000h-7F9FFFh	3FC000h-3FCFFFh
132	8/4		7FA000h-7FBFFFh	3FD000h-3FDFFFh
133	8/4		7FC000h-7FDFFFh	3FE000h-3FEFFFh
134	8/4		7FE000h-7FFFFh	3FF000h-3FFFFFh

Table 22. Bottom boot block addresses, M29W064FB

Block	Kbytes/Kwords	Protection block group	(x8)	(x16)
0	8/4		000000h-001FFFh	000000h-000FFFh
1	8/4		002000h-003FFFh	001000h-001FFFh
2	8/4		004000h-005FFFh	002000h-002FFFh
3	8/4		006000h-007FFFh	003000h-003FFFh
4	8/4		008000h-009FFFh	004000h-004FFFh
5	8/4	Protection group	00A000h-00BFFFh	005000h-005FFFh
6	8/4		00C000h-00DFFFh	006000h-006FFFh
7	8/4		00E000h-00FFFFh	007000h-007FFFh
8	64/32		010000h-01FFFFh	008000h-00FFFFh
9	64/32		020000h-02FFFFh	010000h-017FFFh
10	64/32		030000h-03FFFFh	018000h-01FFFFh
11	64/32		040000h-04FFFFh	020000h-027FFFh
12	64/32	Drotoction group	050000h-05FFFFh	028000h-02FFFFh
13	64/32	Protection group	060000h-06FFFFh	030000h-037FFFh
14	64/32		070000h-07FFFFh	038000h-03FFFFh
15	64/32		080000h-08FFFFh	040000h-047FFFh
16	64/32	Drotoction group	090000h-09FFFFh	048000h-04FFFFh
17	64/32	Protection group	0A0000h-0AFFFFh	050000h-057FFFh
18	64/32		0B0000h-0BFFFFh	058000h-05FFFFh
19	64/32		0C0000h-0CFFFFh	060000h-067FFh
20	64/32	Drotoction group	0D0000h-0DFFFFh	068000h-06FFFFh
21	64/32	Protection group	0E0000h-0EFFFFh	070000h-077FFFh
22	64/32		0F0000h-0FFFFFh	078000h-07FFFFh
23	64/32		100000h-10FFFFh	080000h-087FFFh
24	64/32	Drotoction group	110000h-11FFFFh	088000h-08FFFFh
25	64/32	Protection group	120000h-12FFFFh	090000h-097FFFh
26	64/32		130000h-13FFFFh	098000h-09FFFFh
27	64/32		140000h-14FFFFh	0A0000h-0A7FFFh
28	64/32	Drotootics group	150000h-15FFFFh	0A8000h-0AFFFFh
29	64/32	Protection group	160000h-16FFFFh	0B0000h-0B7FFFh
30	64/32		170000h-17FFFFh	0B8000h-0BFFFFh
31	64/32		180000h-18FFFFh	0C0000h-0C7FFFh
32	64/32	Drotootics group	190000h-19FFFFh	0C8000h-0CFFFFh
33	64/32	Protection group	1A0000h-1AFFFFh	0D0000h-0D7FFFh
34	64/32		1B0000h-1BFFFFh	0D8000h-0DFFFFh

Table 22. Bottom boot block addresses, M29W064FB (continued)

Block	Kbytes/Kwords	Protection block group	(x8)	(x16)
35	64/32		1C0000h-1CFFFFh	0E0000h-0E7FFh
36	64/32	Drotoction group	1D0000h-1DFFFFh	0E8000h-0EFFFFh
37	64/32	Protection group	1E0000h-1EFFFFh	0F0000h-0F7FFFh
38	64/32		1F0000h-1FFFFFh	0F8000h-0FFFFFh
39	64/32		200000h-20FFFFh	100000h-107FFFh
40	64/32	Drata ation arrays	210000h-21FFFFh	108000h-10FFFFh
41	64/32	Protection group	220000h-22FFFFh	110000h-117FFFh
42	64/32		230000h-23FFFFh	118000h-11FFFFh
43	64/32		240000h-24FFFFh	120000h-127FFFh
44	64/32	Drotoction group	250000h-25FFFFh	128000h-12FFFFh
45	64/32	Protection group	260000h-26FFFFh	130000h-137FFFh
46	64/32		270000h-27FFFh	138000h-13FFFFh
47	64/32		280000h-28FFFFh	140000h-147FFFh
48	64/32	Drata ation arrays	290000h-29FFFFh	148000h-14FFFFh
49	64/32	Protection group	2A0000h-2AFFFFh	150000h-157FFFh
50	64/32		2B0000h-2BFFFFh	158000h-15FFFFh
51	64/32		2C0000h-2CFFFFh	160000h-167FFFh
52	64/32	Drotoction group	2D0000h-2DFFFFh	168000h-16FFFFh
53	64/32	Protection group	2E0000h-2EFFFFh	170000h-177FFFh
54	64/32		2F0000h-2FFFFFh	178000h-17FFFFh
55	64/32		300000h-30FFFFh	180000h-187FFFh
56	64/32	Protection group	310000h-31FFFFh	188000h-18FFFFh
57	64/32	Protection group	320000h-32FFFFh	190000h-197FFFh
58	64/32		330000h-33FFFFh	198000h-19FFFFh
59	64/32		340000h-34FFFFh	1A0000h-1A7FFFh
60	64/32	Drotoction group	350000h-35FFFFh	1A8000h-1AFFFFh
61	64/32	Protection group	360000h-36FFFFh	1B0000h-1B7FFFh
62	64/32		370000h-37FFFFh	1B8000h-1BFFFFh
63	64/32		380000h-38FFFFh	1C0000h-1C7FFFh
64	64/32	Drotootics group	390000h-39FFFFh	1C8000h-1CFFFFh
65	64/32	Protection group	3A0000h-3AFFFFh	1D0000h-1D7FFFh
66	64/32		3B0000h-3BFFFFh	1D8000h-1DFFFFh

Table 22. Bottom boot block addresses, M29W064FB (continued)

Block	Kbytes/Kwords	Protection block group	(x8)	(x16)
67	64/32		3C0000h-3CFFFFh	1E0000h-1E7FFFh
68	64/32	Drotoction group	3D0000h-3DFFFFh	1E8000h-1EFFFFh
69	64/32	Protection group	3E0000h-3EFFFFh	1F0000h-1F7FFFh
70	64/32		3F0000h-3FFFFFh	1F8000h-1FFFFFh
71	64/32		400000h-40FFFFh	200000h-207FFFh
72	64/32	Drotoction group	410000h-41FFFFh	208000h-20FFFFh
73	64/32	Protection group	420000h-42FFFFh	210000h-217FFFh
74	64/32		430000h-43FFFFh	218000h-21FFFFh
75	64/32		440000h-44FFFFh	220000h-227FFFh
76	64/32	Drotootion group	450000h-45FFFFh	228000h-22FFFFh
77	64/32	Protection group	460000h-46FFFFh	230000h-237FFFh
78	64/32		470000h-47FFFFh	238000h-23FFFFh
79	64/32		480000h-48FFFFh	240000h-247FFFh
80	64/32	Protection group	490000h-49FFFFh	248000h-24FFFFh
81	64/32	Protection group	4A0000h-4AFFFFh	250000h-257FFFh
82	64/32		4B0000h-4BFFFFh	258000h-25FFFFh
83	64/32		4C0000h-4CFFFFh	260000h-267FFh
84	64/32	Drotootion group	4D0000h-4DFFFFh	268000h-26FFFFh
85	64/32	Protection group	4E0000h-4EFFFFh	270000h-277FFFh
86	64/32		4F0000h-4FFFFFh	278000h-27FFFh
87	64/32		500000h-50FFFFh	280000h-287FFFh
88	64/32	Protection group	510000h-51FFFFh	288000h-28FFFFh
89	64/32	Frotection group	520000h-52FFFFh	290000h-297FFFh
90	64/32		530000h-53FFFFh	298000h-29FFFFh
91	64/32		540000h-54FFFFh	2A0000h-2A7FFFh
92	64/32	Drotootion group	550000h-55FFFFh	2A8000h-2AFFFFh
93	64/32	Protection group	560000h-56FFFFh	2B0000h-2B7FFFh
94	64/32		570000h-57FFFh	2B8000h-2BFFFFh
95	64/32		580000h-58FFFFh	2C0000h-2C7FFFh
96	64/32	Protection group	590000h-59FFFFh	2C8000h-2CFFFFh
97	64/32	Frotection group	5A0000h-5AFFFFh	2D0000h-2D7FFFh
98	64/32		5B0000h-5BFFFFh	2D8000h-2DFFFFh

Table 22. Bottom boot block addresses, M29W064FB (continued)

Block	Kbytes/Kwords	Protection block group	(x8)	(x16)
99	64/32		5C0000h-5CFFFFh	2E0000h-2E7FFh
100	64/32	Drotostion group	5D0000h-5DFFFFh	2E8000h-2EFFFFh
101	64/32	Protection group	5E0000h-5EFFFFh	2F0000h-2F7FFFh
102	64/32		5F0000h-5FFFFFh	2F8000h–2FFFFFh
103	64/32		600000h-60FFFFh	300000h-307FFFh
104	64/32	Drotostion group	610000h-61FFFFh	308000h-30FFFFh
105	64/32	Protection group	620000h-62FFFFh	310000h-317FFFh
106	64/32		630000h-63FFFFh	318000h-31FFFFh
107	64/32		640000h-64FFFFh	320000h-327FFFh
108	64/32	Drotootion group	650000h-65FFFFh	328000h-32FFFFh
109	64/32	Protection group	660000h-66FFFFh	330000h-337FFFh
110	64/32		670000h-67FFFh	338000h-33FFFFh
111	64/32		680000h-68FFFFh	340000h-347FFFh
112	64/32	Protection group	690000h-69FFFFh	348000h-34FFFFh
113	64/32	Protection group	6A0000h-6AFFFFh	350000h-357FFFh
114	64/32		6B0000h-6BFFFFh	358000h-35FFFFh
115	64/32		6C0000h-6CFFFFh	360000h-367FFFh
116	64/32	Drotostian group	6D0000h-6DFFFFh	368000h-36FFFFh
117	64/32	Protection group	6E0000h-6EFFFFh	370000h-377FFFh
118	64/32		6F0000h-6FFFFFh	378000h-37FFFFh
119	64/32		700000h-70FFFFh	380000h-387FFFh
120	64/32	Drotootion group	710000h-71FFFFh	388000h-38FFFFh
121	64/32	Protection group	720000h-72FFFFh	390000h-397FFFh
122	64/32		730000h-73FFFFh	398000h-39FFFFh
123	64/32		740000h-74FFFFh	3A0000h-3A7FFFh
124	64/32	Drete etien enem	750000h-75FFFFh	3A8000h-3AFFFFh
125	64/32	Protection group	760000h-76FFFFh	3B0000h-3B7FFFh
126	64/32		770000h-77FFFFh	3B8000h-3BFFFFh
127	64/32		780000h-78FFFFh	3C0000h-3C7FFFh
128	64/32	Protection group	790000h-79FFFFh	3C8000h-3CFFFFh
129	64/32	Protection group	7A0000h-7AFFFFh	3D0000h-3D7FFFh
130	64/32		7B0000h-7BFFFFh	3D8000h-3DFFFFh

Table 22. Bottom boot block addresses, M29W064FB (continued)

Block	Kbytes/Kwords	Protection block group	(x8)	(x16)
131	64/32		7C0000h-7CFFFFh	3E0000h-3E7FFFh
132	64/32	Protection group	7D0000h-7DFFFFh	3E8000h-3EFFFFh
133	64/32	Frotection group	7E0000h-7EFFFFh	3F0000h-3F7FFFh
134	64/32		7F0000h-7FFFFh	3F8000h-3FFFFFh

Appendix B Common flash interface (CFI)

The common flash interface is a JEDEC approved, standardized data structure that can be read from the flash memory device. It allows a system software to query the device to determine various electrical and timing parameters, density information and functions supported by the memory. The system can interface easily with the device, enabling the software to upgrade itself when necessary.

When the CFI Query command is issued the device enters CFI query mode and the data structure is read from the memory. Tables 23, 24, 25, 26, 27, and 28, show the addresses used to retrieve the data.

The CFI data structure also contains a security area where a 64-bit unique security number is written (see Table 28: Security code area). This area can be accessed only in read mode by the final user. It is impossible to change the security number after it has been written by Numonyx.

Query structure overview⁽¹⁾ Table 23.

Add	ress	Sub-section name	Description	
x16	х8	Sub-section name		
10h	20h	CFI query identification string	Command set ID and algorithm data offset	
1Bh	36h	System interface information	Device timing & voltage information	
27h	4Eh	Device geometry definition	Flash device layout	
40h	80h	Primary algorithm-specific extended query table	Additional information specific to the primary algorithm (optional)	
61h	C2h	Security code area	64-bit unique device number	

^{1.} Query data are always presented on the lowest order data outputs.

Table 24. CFI query identification string⁽¹⁾

Add	ress	- Data Description		Value
x16	x8	Data	Description	value
10h	20h	0051h		'Q'
11h	22h	0052h	Query unique ASCII string 'QRY'	'R'
12h	24h	0059h		'Υ'
13h	26h	0002h	Primary algorithm command set and control interface ID code	AMD
14h	28h	0000h	16-bit ID code defining a specific algorithm	compatible
15h	2Ah	0040h	Address for primary algorithm extended query table (see	P = 40h
16h	2Ch	0000h	Table 27)	P = 4011
17h	2Eh	0000h	Alternate vendor command set and control interface ID code	NA
18h	30h	0000h	second vendor - specified algorithm supported	INA
19h	32h	0000h	Address for alternate algorithm extended query table	NA
1Ah	34h	0000h	Address for alternate algorithm extended query table	IVA

^{1.} Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are '0'.

Table 25. CFI query system interface information

Add	Address		Description	Value
x16	x8	Data	Description	Value
1Bh	36h	0027h	V _{CC} logic supply minimum program/erase voltage bit 7 to 4BCD value in volts bit 3 to 0BCD value in 100 mV	2.7 V
1Ch	38h	0036h	V _{CC} logic supply maximum program/erase voltage bit 7 to 4BCD value in volts bit 3 to 0BCD value in 100 mV	3.6 V
1Dh	3Ah	00B5h	V _{PP} [programming] supply minimum program/erase voltage bit 7 to 4HEX value in volts bit 3 to 0BCD value in 100 mV	11.5 V
1Eh	3Ch	00C5h	V _{PP} [programming] supply maximum program/erase voltage bit 7 to 4HEX value in volts bit 3 to 0BCD value in 100 mV	12.5 V
1Fh	3Eh	0004h	Typical timeout per single byte/word program = 2 ⁿ μs	16 µs
20h	40h	0000h	Typical timeout for minimum size write buffer program = $2^n \mu s$	NA
21h	42h	000Ah	Typical timeout per individual block erase = 2 ⁿ ms	1 s
22h	44h	0000h	Typical timeout for full chip erase = 2 ⁿ ms	NA
23h	46h	0004h	Maximum timeout for byte/word program = 2 ⁿ times typical	256 µs
24h	48h	0000h	Maximum timeout for write buffer program = 2 ⁿ times typical	NA
25h	4Ah	0003h	Maximum timeout per individual block erase = 2 ⁿ times typical	8 s
26h	4Ch	0000h	Maximum timeout for chip erase = 2 ⁿ times typical	NA

Table 26. Device geometry definition⁽¹⁾

Address Data		Doto	Description	Value
x16	x8	Data	Description	value
27h	4Eh	0017h	Device size = 2 ⁿ in number of bytes	8 Mbytes
28h	50h	0002h	Flack desires interference de description	x8, x16
29h	52h	0000h	Flash device interface code description	async.
2Ah 2Bh	54h 56h	0004h 0000h	Maximum number of bytes in multi-byte program or page = 2 ⁿ	16 bytes
2Ch	58h	0002h	Number of erase block regions. It specifies the number of regions containing contiguous erase blocks of the same size.	2
2Dh	5Ah	0007h	Region 1 information	0
2Eh	5Ch	0000h	Number of erase blocks of identical size = 0007h+1	8
2Fh	5Eh	0020h	Region 1 information	8 Kbytes
30h	60h	0000h	Block size in region 1 = 0020h * 256 byte	o Ruytes
31h	62h	007Eh	Region 2 information	127
32h	64h	0000h	Number of erase blocks of identical size= 007Eh+1	127
33h	66h	0000h	Region 2 information	64 Kbytes
34h	68h	0001h	Block size in region 2 = 0100h * 256 byte	04 Kuyles
35h	6Ah	0000h	Region 3 information	
36h	6Ch	0000h	Number of erase blocks of identical size=007Fh+1	0
37h	6Eh	0000h	Region 3 information	
38h	70h	0000h	Block size in region 3 = 0000h * 256 bytes	0
39h	72h	0000h	Region 4 information	
3Ah	74h	0000h	Number of erase blocks of identical size=007Fh+1	0
3Bh	76h	0000h	Region 4 information	
3Ch	78h	0000h	Block size in region 4 = 0000h * 256 bytes	0

For bottom boot devices, erase block region 1 is located from address 000000h to 007FFFh and erase block region 2 from address 008000h to 3FFFFFh.
 For top boot devices, erase block region 1 is located from address 000000h to 3F7FFFh and erase block region 2 from address 3F8000h to 3FFFFFh.

Table 27. Primary algorithm-specific extended query table

Address		Dete	December 1	Value
x16	х8	Data	Description	Value
40h	80h	0050h		'P'
41h	82h	0052h	Primary algorithm extended query table unique ASCII string 'PRI'	'R'
42h	84h	0049h		'l'
43h	86h	0031h	Major version number, ASCII	'1'
44h	88h	0033h	Minor version number, ASCII	'3'
45h	8Ah	0000h	Address sensitive unlock (bits 1 to 0) 00h = required, 01h = not required Silicon revision number (bits 7 to 2)	Yes
46h	8Ch	0002h	Erase suspend 00h = not supported, 01h = read only, 02 = read and write	2
47h	8Eh	0004h	Block protection 00h = not supported, x = number of blocks per protection group	4
48h	90h	0001h	Temporary block unprotect 00h = not supported, 01h = supported	Yes
49h	92h	0004h	Block protect /unprotect 04 = M29W064F	04
4Ah	94h	0000h	Simultaneous operations, 00h = not supported	No
4Bh	96h	0000h	Burst mode: 00h = not supported, 01h = supported	No
4Ch	98h	0001h	Page mode: 00h = not supported, 01h = 4 page word, 02h = 8 page word	Yes
4Dh	9Ah	00B5h	V _{PP} supply minimum program/erase voltage bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 mV	11.5 V
4Eh	9Ch	00C5h	V _{PP} supply maximum program/erase voltage bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 mV	12.5 V
4Fh	9Eh	0002h 0003h	Top/bottom boot block flag 02h = bottom boot device 03h = top boot device	_
50h	A0h	0001h	Program suspend 00h = not supported 01h = supported	Supported

Table 28. Security code area

Add	Address		Description	
x16	х8	Data	Description	
61h	C3h, C2h	XXXX		
62h	C5h, C4h	XXXX	64 hituurigus daviga numbar	
63h	C7h, C6h	XXXX	64 bit: unique device number	
64h	C9h, C8h	XXXX		

Appendix C Block protection

Block protection can be used to prevent any operation from modifying the data stored in the memory. The blocks are protected in groups, refer to *Appendix A: Block addresses*, *Table 21* and *Table 22* for details of the protection groups. Once protected, program and erase operations within the protected group fail to change the data.

There are three techniques that can be used to control block protection, these are the programmer technique, the in-system technique and temporary unprotection. Temporary unprotection is controlled by the reset/block temporary unprotection pin, RP; this is described in the Section 2: Signal descriptions.

C.1 Programmer technique

The programmer technique uses high (V_{ID}) voltage levels on some of the bus pins. These cannot be achieved using a standard microprocessor bus, therefore the technique is recommended only for use in programming equipment.

To protect a group of blocks follow the flowchart in *Figure 16: Programmer equipment group protect flowchart*. To unprotect the whole chip it is necessary to protect all of the groups first, then all groups can be unprotected at the same time. To unprotect the chip follow *Figure 17: Programmer equipment chip unprotect flowchart. Table 29: Programmer technique bus operations, BYTE = VIH or VIL, gives a summary of each operation.*

The timing on these flowcharts is critical. Care should be taken to ensure that, where a pause is specified, it is followed as closely as possible. Do not abort the procedure before reaching the end. Chip unprotect can take several seconds and a user message should be provided to show that the operation is progressing.

C.2 In-system technique

The in-system technique requires a high voltage level on the reset/blocks temporary unprotect pin, $\overline{\text{RP}}$. This can be achieved without violating the maximum ratings of the components on the microprocessor bus, therefore this technique is suitable for use after the memory has been fitted to the system.

To protect a group of blocks follow the flowchart in *Figure 18: In-system equipment group protect flowchart*. To unprotect the whole chip it is necessary to protect all of the groups first, then all the groups can be unprotected at the same time. To unprotect the chip follow *Figure 19: In-system equipment chip unprotect flowchart*.

The timing on these flowcharts is critical. Care should be taken to ensure that, where a pause is specified, it is followed as closely as possible. Do not allow the microprocessor to service interrupts that will upset the timing and do not abort the procedure before reaching the end. Chip unprotect can take several seconds and a user message should be provided to show that the operation is progressing.

Table 29. Programmer technique bus operations, $\overline{\text{BYTE}} = V_{\text{IH}}$ or V_{IL}

Operation	Ē	G	w	Address inputs A0-A21	Data inputs/outputs DQ15A-1, DQ14-DQ0
Block (group) protect ⁽¹⁾	V _{IL}	V _{ID}	V _{IL} pulse	A9 = V_{ID} , A12-A21 = block address, others = X	Х
Chip unprotect	V _{ID}	V _{ID}	V _{IL} pulse	$A9 = V_{ID}, A12 = V_{IH}, A15 = V_{IH}$ others = X	Х
Block (group) protection verify	V _{IL}	V _{IL}	V _{IH}	A0, A2, A3 = V_{IL} , A1 = V_{IH} , A6 = V_{IL} , A9 = V_{ID} , A12-A21 = block address others = X	Pass = XX01h Retry = XX00h
Block (group) unprotection verify	V _{IL}	V _{IL}	V _{IH}	A0, A2, A3 = V_{IL} , A1 = V_{IH} , A6 = V_{IH} , A9 = V_{ID} , A12-A21 = block address others = X	Retry = XX01h Pass = XX00h

^{1.} Block protection groups are shown in *Appendix A*, tables *21* and *22*.

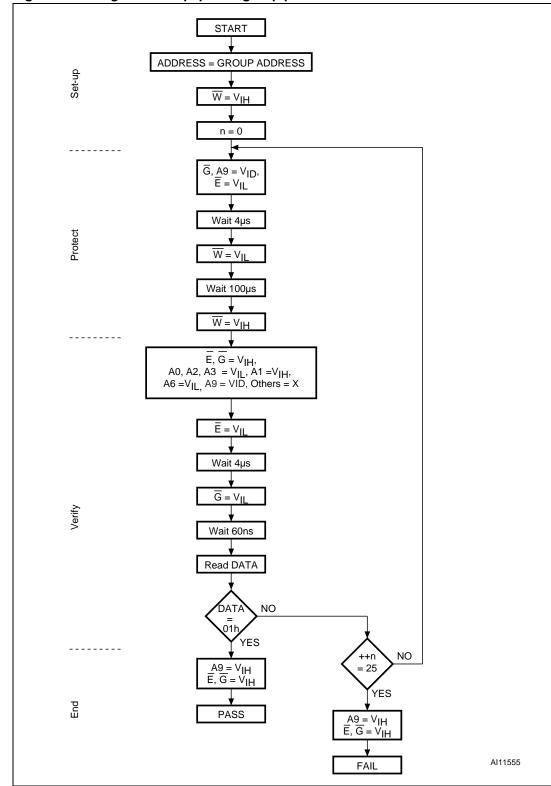


Figure 16. Programmer equipment group protect flowchart

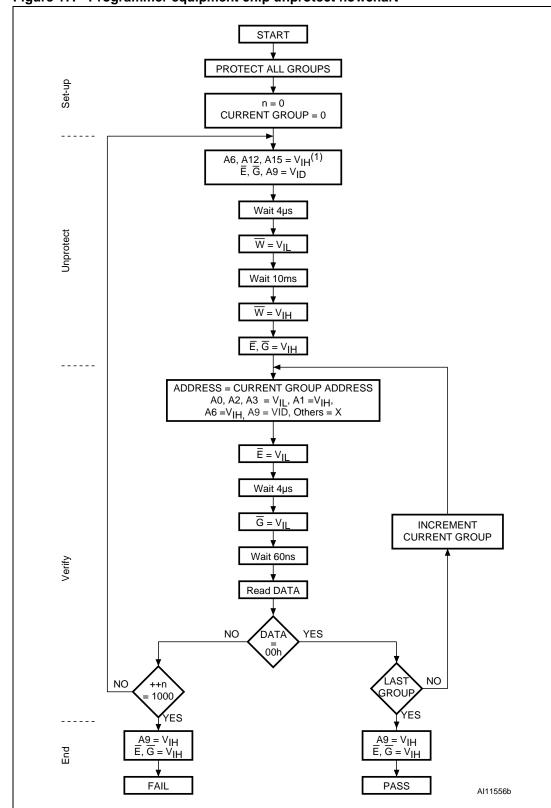


Figure 17. Programmer equipment chip unprotect flowchart

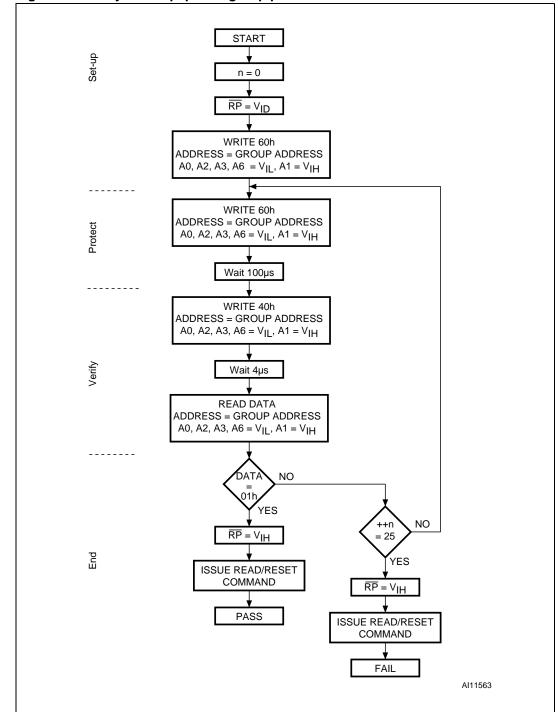


Figure 18. In-system equipment group protect flowchart

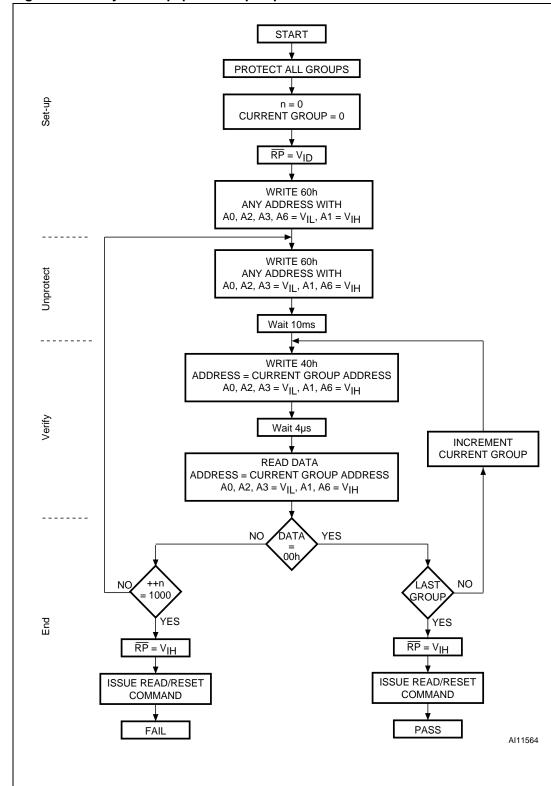


Figure 19. In-system equipment chip unprotect flowchart

10 Revision history

Table 30. Document revision history

Date	Revision	Changes
18-Mar-2008	1	Initial release.
27-Mar-2008	2	Applied Numonyx branding.
30-Jun-2008	3	Removed all the references to the extended memory block. Minor text changes.
10-Nov-2008	4	Added automotive device grade and automotive qualified information to cover page and order information page. Added Figure 15.: TFBGA48 6x8mm - 6x8 active ball array, 0.8mm pitch, package outline and Table 19.: TFBGA48 6x8mm - 6x8 active ball array, 0.8mm pitch, package mechanical data.

Please Read Carefully:

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN NUMONYX'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Numonyx may make changes to specifications and product descriptions at any time, without notice.

Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Numonyx reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by visiting Numonyx's website at http://www.numonyx.com.

Numonyx StrataFlash is a trademark or registered trademark of Numonyx or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2008, Numonyx, B.V., All Rights Reserved.